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1. Introduction

In this chapter, we hope to provide a brief overview of how the brain’s auditory system represents
speech. The topic is vast, many decades of research on the subject have generated several book’s worth
of insight into this fascinating question, and getting close up and personal with this subject matter does
necessitate  a  fair  bit  of  background  knowledge  about  neuroanatomy  and  physiology,  as  well  as
acoustics and linguistic sciences. Providing a reasonably comprehensive overview of the topic which is
accessible to a wide readership, all in a short chapter, is a near impossible task, and we apologize in
advance for the shortcomings that this chapter will inevitably have. With these caveats out of the way
and without further ado, let us jump right in and begin by examining the question: what is there to
“represent” in a speech signal? 

The word “representation” is quite widely used in sensory neuroscience, but it is rarely clearly defined.
A “neural representation” tends  to refer to  the manner in which neural  activity patterns encode or
processes some key aspects of the sensory world. Of course, if we want to understand how the brain
listens to speech, then grasping how neural activity in early stages of the nervous system encodes
speech sounds is really only a very small part of what we would ideally like to understand. It is a
necessary first step that leaves many interesting questions unanswered, as you can easily appreciate if
you consider that fairly simple technological devices such as telephone lines are able to “represent”
speech with patterns of electrical activity, but these devices tell us relatively little about what it means
for a brain to hear speech. Phone lines merely have to capture enough of the physical parameters of an
acoustic waveform to allow the re-synthesis of a sufficiently similar acoustic waveform to facilitate
comprehension by another person at the other end of the line. Brains, in contrast, don’t just deliver
signals to “a mind at the other end of the line”, they have to make the mind at the other end of the line,
and to do that they have to try to learn something from the speech signal about who speaks, where they
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might  be,  what  mood they are  in,  and,  most  importantly,  about  the  ideas  the  speaker  is  trying  to
communicate. Consequently it would be nice to know how the brain represents not just the acoustics,
but also the phonetic, prosodic and semantic features of the speech it hears. 

Readers of this volume are likely to be well aware that extracting such “higher order” features from
speech  signals  is  difficult  and  intricate.  Once  the  physical  aspects  of  the  acoustic  waveform are
encoded, phonetic properties, such as formant frequencies, voicing and voice pitch, must be inferred,
interpreted and classified in a context-dependent manner, which in turn facilitates the creation of a
semantic  representation of  speech.  In  the auditory brain,  this  occurs  along a processing hierarchy,
where  the  lowest  levels  of  the  auditory  nervous  system,  the  inner  ear,  auditory  nerve  fibres  and
brainstem, encode the physical attributes of the sound and compute what might be described as “low
level  features”,  which  are  then  passed  on via  the  midbrain  and the  thalamus  toward  an  extensive
network of auditory and multisensory cortical areas, whose task it is to form phonetic and semantic
representations.  As  this  chapter  progresses,  we  will  look  in  some  detail  at  this  progressive
transformation of an initially largely “acoustic” representation of speech sounds in the auditory nerve,
brainstem, midbrain and primary cortex to an increasingly “linguistic” feature representation in a part
of the brain called the superior temporal gyrus, and finally to semantic representations in brain areas
stretching well beyond those classically thought of as “auditory” structures.

While it is apt to think of this neural speech processing stream as a hierarchical process, it  would
nevertheless be wrong to think of this process as entirely feed-forward. It is well known that, for each
set  of  ascending nerve  fibres  carrying  auditory  signals  from the  inner  ear  to  the  brainstem,  from
brainstem to midbrain, from midbrain to thalamus, and from thalamus to cortex, there is a parallel,
descending pathway going from cortex back to thalamus, midbrain, brainstem and all the way back to
the ear. This is thought to allow feedback signals to be sent in order to focus attention, and to make use
of the fact that the rules of language make the temporal evolution of speech sounds partly predictable,
and such predictions can facilitate hearing speech in noise, or to “tune the ear” to the voice or dialect of
a particular speaker. 

To orient the readers who are unfamiliar with the neuroanatomy of the auditory pathway we include a
sketch in Figure 1, which shows the approximate location of some of the key stages of the early parts of
this pathway, from the ear to the primary auditory cortex, projected onto a drawing of a frontal section
through the brain running vertically roughly through the middle of the ear canals. 
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Figure 1: Illustration of the ear and early stages of the ascending auditory 
pathway.

The  arrows  in  Figure  1 show the  principal  connections  along the  main,  the  so  called  ‘lemniscal’
ascending auditory pathway. Note, however, that it is impossible to overstate the extent to which Figure
1 oversimplifies  the  richness  and  complexity  of  the  brain’s  auditory  pathways.  For  example,  the
cochlear nuclei,  the first  auditory relay station receiving input from the ear, has no less than three
anatomical subdivisions, each comprising many tens to a few hundred thousand neurons of different
cell types and with different onward connections. Here we show the output neurons of the cochlear
nuclei as projecting to the superior olive bilaterally, which is essentially correct, but for simplicity we
omit the fact that the superior olive itself is comprised of around half a dozen intricately interconnected
subnuclei, and that there are also connections from the cochlear nuclei which bypass the superior olive
and connect straight to the inferior colliculus, the major auditory processing center of the midbrain. The
inferior  colliculus  too  comprises  several  subdivisions,  as  does  the  next  station  on  the  ascending
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pathway, the medial geniculate body of the thalamus. And even primary auditory cortex is thought to
have two or three distinct subfields, depending on which mammalian species one looks at and which
anatomist one asks. In order not to clutter the figure we show none of the descending connections, but
to think of each of the arrows here as going in both directions would not be a bad start. 

The complexity of the anatomy is quite bewildering, and much remains unknown about the detailed
structure and function of its many subdivisions. But we have nevertheless learned a huge amount about
these structures and the physiological mechanisms that are at work within them and which underpin our
ability to hear speech. Animal experiments have been invaluable in elucidating basic physiological
mechanisms of sound encoding, auditory learning and pattern classification in the mammalian brain.
Clinical studies on patients with various forms of hearing impairment or aphasia have also helped
identify key cortical structures. More recently, functional brain imaging on normal volunteers, as well
as  invasive  electrophysiological  recordings  from the  brains  of  patients  who  are  undergoing  brain
surgery  for  epilepsy  have  further  refined  our  knowledge  of  speech  representations  particularly  in
higher-order cortical structures. 

In the following sections we shall try to highlight some of the insights that have been gained from these
types of studies, and we shall try to structure this chapter like a journey, accompanying speech sounds
as they leave the vocal tract of a speaker, enter the listener’s ear, become encoded as trains of nerve
impulses in the cochlea and auditory nerve,  and then travel along the pathways just described and
spread  out  across  a  phenomenally  intricate  network  of  hundreds  of  millions  of  neurons  whose
concerted  action  underpins  our  ability  to  perform the  everyday  magic  of  communicating  abstract
thoughts across space and time by the medium of the spoken word. 

2. Encoding of speech in the inner ear and auditory nerve 

Let us begin our journey by reminding ourselves about how speech sounds are generated, and what
acoustic features are therefore elementary aspects of a speech sound that need to be encoded. When we
speak, we produce both voiced and unvoiced speech sounds. Voiced speech sounds arise when the
vocal folds in our larynx open and close periodically, producing a rapid and periodic glottal pulse train
which may vary from around 80 Hz for a low bass voice to 900 Hz or above for a high soprano voice,
although glottal pulse rates of somewhere between 125 to 300 Hz are most common for adult speech.
Voiced speech sounds include vowels and voiced consonants. Unvoiced sounds are simply those which
are not produced with any vibrating of the vocal folds. The manner in which they are created causes
unvoiced speech sounds to have spectra typical of noise, while the spectra of voiced speech sounds
exhibit a “harmonic structure”, with regular sharp peaks at frequencies corresponding to the overtones
of the glottal pulse train. Related to these differences in the waveforms and spectra is the fact that,
perceptually, unvoiced speech sounds do not have an identifiable pitch, while voiced speech sounds do
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have a clear pitch of a height that corresponds to their fundamental frequency, which corresponds to the
glottal pulse rate. Thus, we can sing melodies with voiced speech sounds, but we cannot whisper a
melody.

When we speak, the different types of sound sources, whether unvoiced noises or voiced harmonic
series, are shaped by resonances in the vocal tract, which we must deftly manipulate by dynamically
changing the volume and the size of the openings of a number of cavities in our throat, mouth and nose,
which we do by articulatory movements of the jaw, soft palate, tongue and lips. The resonances in our
vocal tracts impose broad spectral peaks on the spectra of the speech sounds, and these broad spectral
peaks are known as formants. The dynamic pattern of changing formant frequencies encodes the lion’s
share of the semantic information in speech. Consequently, to interpret a speech stream that arrives at
our ears, one might think that our ears and brains will chiefly need to examine the incoming sounds for
broad peaks in the spectrum to identify formants. But in order to detect voicing and to determine voice
pitch the brain must also look either for sharp peaks at regular intervals in the spectrum to identify
harmonics,  or,  alternatively,  look  for  periodicities  in  the  temporal  waveform.  Pitch  information
provided by harmonicity,  or,  equivalently periodicity,  is  a  vital  cue to  help identify speakers,  gain
prosodic information, or to determine the “tone” of a vowel in tonal languages like Chinese or Thai
which use pitch contours to distinguish between otherwise identical, homophonic syllables. Encoding
information  about  these  fundamental  features,  formants  and harmonicity  or  periodicity,  is  thus  an
essential  job  of  the  inner  ear  and  auditory  nerve.  They  do  this  as  they  translate  incoming  sound
waveforms into a “tonotopically organized” pattern of neural activity which represents differences in
acoustic energy across frequency bands by means of a so-called “rate-place code”. Nerve fibers which
are tuned to systematically different preferred, or “characteristic” frequencies are arranged in an orderly
array. Differences in firing rates across the array encode peaks and valleys in the frequency spectrum,
which conveys information about formants, and, to a lesser extent, about harmonics. 

This concept of tonotopy is quite central to the way all sounds, not just speech sounds, are usually
thought  to  be  represented  along the  lemniscal  auditory  pathway.  All  the  stations  of  the  lemniscal
auditory pathway shown in Figure 1, from the cochlea to primary auditory cortex, contain at least one,
and  sometimes  several  “tonotopic  maps”,  i.e.  arrays  of  frequency  tuned  neurons  arranged  in  a
systematic array from low to high preferred frequency. It is therefore worth examining this notion of
tonotopy in  some detail  to  understand its  origin,  and to  ask  what  tonotopy can  and cannot  do to
represent fundamental features of speech. 

In the mammalian brain, tonotopy arises quite naturally from the way sounds are transduced into neural
responses by the basilar membrane and organ of corti in the cochlea. When sounds are transmitted from
the ear drum to the inner ear via the ossicles, the mechanical vibrations are transmitted to the basilar
membrane  via  fluid  filled  chambers  of  the  inner  ear.  The  basilar  membrane  itself  has  a  stiffness
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gradient, being stiff at the “basal” end, near the ossicles, and floppy at the far end, the “apex”. Sounds
transmitted  through the  far  end  have  little  mechanical  resistance  from the  stiffness  of  the  basilar
membrane, but have to displace more inert fluid column in the inner ear. Sounds traveling through the
near end face less inertia, but more stiffness. The upshot of this is that one can think of the basilar
membrane as a bank of mechanical “spring-mass” filters, with filters tuned to high frequencies at the
base, and to increasingly lower frequencies toward the apex. Tiny, highly sensitive hair cells which sit
on  the  basilar  membrane  then  pick  up  these  frequency  filtered  vibrations  and  translate  them into
electrical signals, which are then encoded as trains of nerve impulses (also called action potentials or
spikes) in the bundles of auditory nerve fibers that connect the inner ear to the brain. Thus, each nerve
fiber in the auditory nerve is frequency tuned, and the sound frequency it is most sensitive to is known
as its “characteristic frequency” (CF).

The cochlea, and the basilar membrane inside it, is curled up in a spiral, and the organization of the
auditory  nerve  mirrors  that  of  the  basilar  membrane:  inside  it  we  have  something  that  could  be
described as a “rate-place” code for sounds, where the amount of sound energy at the lowest audible
frequencies  (ca  50  Hz)  is  represented  by  the  firing  rates  of  nerve  fibers  right  at  the  center,  and
increasingly higher frequencies are encoded by nerve fibers which are arranged in a spiral around that
center. Once the auditory nerve reaches the cochlear nuclei, this orderly spiral arrangement “unwraps”
to project systematically across the extent of the nuclei, creating tonotopic maps which are then passed
on up the auditory pathway by orderly anatomical connections from one station to the next. What this
means for encoding of speech in the early auditory system is that formant peaks of speech sounds, and
maybe also the peaks of harmonics, should be represented by systematic differences in firing rates
across the tonotopic array. The human auditory nerve contains about 30,000 such nerve fibers, each
capable of firing anywhere between zero and several hundred spikes a second. So there are many
hundreds of thousands of nerve impulses per second available to represent the shape of the sound
spectrum across the tonotopic array. And indeed, there is quite a lot of experimental evidence that
systematic  firing  rate  differences  across  this  array  of  nerve  fibers  are  is  not  a  bad  first  order
approximation  of  what  goes  on  in  the  auditory  system  (Delgutte  1997), but  as  ever  so  often  in
neurobiology, the full story is a lot more complicated. 

Thanks  to  decades  of  physiological  and anatomical  studies  on experimental  animals  by dozens  of
teams, the mechanisms of sound encoding in the auditory nerve are now known in sufficient detail that
it has become possible to develop computer models that can predict the activity of auditory nerve fibers
to arbitrary sound inputs (Zhang et al. 2001; Heinz et al. 2002; Sumner et al. 2002; Meddis and O'Mard
2005; Zhang and Carney 2005; Ferry and Meddis 2007), and here we shall use the model of Zilany et
al. (2014) to look at the encoding of speech sounds in the auditory nerve in a little more detail. 
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Figure 2: A power spectrum representing an instantaneous spectrogram (left) and a simulated 
distribution of firing rates for an auditory nerve fiber (right) both for the vowel [ɛ] in [hɛːd] “head”.  

The left panel of Figure  2 shows the power spectrum of a recording of the spoken vowel [ɛ], as in
“head”  (IPA [hɛːd]).  The  spectrum shows  many  sharp  peaks  at  multiples  of  about  145  Hz  –  the
harmonics of the vowel. These sharp peaks ride on top of broad peaks centered around ca. 500, 1850
and 2700 Hz – the formants of the vowel. The right panel of the figure shows the distribution of firing
rates of “low spontaneous rate” (LSR) auditory nerve fibers in response to the same vowel, according
to the auditory nerve fiber model by Zilany et al. (2014). Along the X axis we plot the CF of each nerve
fiber, and along the Y axis we expect the average number of spikes the fiber would be expected to fire
per second when presented with the vowel [ɛ] at a sound level of 65 dB SPL, the sort of sound level
that might be typical during a calm conversation in a quiet background. 

Comparing the spectrogram on the left with the distribution of firing rates on the right, it is apparent
that the broad peaks of the formants are well reflected in the firing rate distribution, if anything perhaps
more visibly so than in the spectrum, but most of the harmonics are not. Indeed, only the lowest three
harmonics  are  visible,  the others  have  been “ironed out”  by the fact  that  the  frequency tuning of
cochlear filters is often broad compared to the frequency interval between individual harmonics, and
becomes broader for higher frequencies. Only the very lowest harmonics are therefore “resolved” by
the rate-place code of the tonotopic nerve fiber array, and we should think of tonotopy as well adapted
to representing formants, but poorly adapted to representing pitch or voicing information. If you bear in
mind that many telephones will high-pass speech at 300 Hz, thereby effectively cutting off the lowest
harmonic peak,  then there really  is  not much information about  the harmonicity  of  the sound left
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reflected in the tonotopic firing rate distribution. But there are important additional cues to voicing and
pitch as we shall see shortly. 

The firing rates of auditory nerve fibers increase monotonically with increasing sound level, but these
fibers do need a minimum threshold sound level, and they cannot increase their firing rates indefinitely
when sounds keep getting louder. This gives auditory nerve fibers a limited “dynamic range”, which
usually covers 50 dB or less. At the edges of the dynamic range, the formants of speech sounds cannot
be effectively represented across the tonotopic array because the neurons in the array either fire not at
all (or not above their “spontaneous” firing rates), or because they all fire as fast as they can. However,
people can usually understand speech well over a very broad range of sound levels. To be able to code
sounds effectively over a wide range of sound levels, the ear appears to have evolved different types of
auditory nerve fibers, some of which specialize for hearing quiet sounds, with low thresholds but also
relatively low saturation sound levels,  and others which specialize for hearing louder sounds,  with
higher thresholds and higher saturation levels. Auditory physiologists call the more sensitive of these
fiber types “high spontaneous rate” (HSR) fibers, given that these auditory nerve fibers may fire nerve
impulses at fairly elevated rates (some 30 spikes/s or so) even in the absence of any external sound, and
the less sensitive fibers are the LSR fibers which we have already encountered, and which fire only a
handful of spikes/s in the absence of sound. There are also medium spontaneous rate fibers, which, as
you might  expect,  lie  in  the  middle  between HSR and LSR fibers  in  sensitivity  and spontaneous
activity. You may of course wonder why these auditory nerve fibers would fire any impulses if there is
no sound to encode, but it is worth bearing in mind that the amount of physical energy in relatively
quiet  sounds  is  minuscule,  and  that  the  sensory  cells  that  need  to  pick  up  those  sounds  cannot
necessarily distinguish a very quiet external noise from internal physiological noise that comes simply
from blood flow or random thermal motion inside the ear at body temperature. Auditory nerve fibers
operate right at the edge of this physiological “noise floor”, and the most sensitive cells are also most
sensitive to the physiological background noise, which gives rise to their high spontaneous firing rate. 
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Figure 3: Firing rate distributions in response to the vowel [ɛ] in “head”[hɛːd] for low spontaneous 
rate fibers (left) and high spontaneous rate fibers (right) at 3 different sound intensities. 

To  get  a  sense  of  what  these  different  auditory  nerve  fiber  types  may  contribute  to  speech
representations as different sound levels, we show in Figure 3 the firing rate distributions for the vowel
[ɛ], much as in the right panel of Figure 2, but at 3 different sound levels (from a very quiet 25 dB SPL
to a pretty loud 85 dB SPL, and for both LSR and HSR populations. As you can see, the LSR fibers
(left  panel)  hardly  respond  at  all  at  25  dB,  but  the  HSR fibers  show clear  peaks  at  the  formant
frequencies already at those very low sound levels. However, at the loud sound levels, most of the HSR
fibers saturate, meaning that most of them are firing as fast as they can, so that the valleys between the
formant peaks begin to disappear. One interesting consequence of this “division of labor” between HSR
and LSR fibers for representing speech at low or high sound levels respectively is that it may provide
an explanation why some people, particularly among the elderly, may complain of increasing inability
to understand speech in situations with high background noise. Recent work from the work by Kujawa
and Liberman (2015) has shown that, perhaps paradoxically, the less sound sensitive LSR fibers are
actually more likely to be damaged during prolonged noise exposure. Patients with such selective fiber
loss would still be able to hear quiet sounds quite well because their HSR fibers are intact, but they
would find it very difficult to resolve sounds in high sound levels when HSR fibers are saturating and
the LSR fibers that should encode spectral contrast at these high levels are missing. It has long been
recognized that our ability to hear speech in noise tends to decline with age, even in those elderly who
are  lucky enough to retain normal  auditory  sensitivity  (Stuart  and Phillips  1996),  and it  has  been
suggested that cumulative, noise induced damage to LSR fibers such as that described by Kujawa and
Liberman in their mouse model might pinpoint a possible culprit. Such “hidden hearing loss”, which is
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not detectable with standard audiometric hearing tests that measure sensitivity to probe tones in quiet,
can be a significant problem, for example by taking all the fun out of important social occasions, such
as lively parties and get-togethers, which leads to significant social isolation. However, some recent
studies have looked for, but failed to find, a clear link between greater noise exposure and poorer
reception of speech in noise (Grinn et al. 2017; Grose et al. 2017), which would suggest that perhaps
the decline in our ability to understand speech in noise as we age may be more to do with impaired
representations of speech in higher, cortical centers than with impaired auditory nerve representations. 

Of course, when you listen to speech, you don’t really want to have to ask yourself whether, given the
current ambient sound levels, you should be listening to your HSR or your LSR auditory nerve fibers in
order to get the best representation of speech formants, and one of the jobs of the auditory brainstem
and  midbrain  circuitry  is  to  combine  information  across  these  nerve  fiber  populations  so  that
representations  at  midbrain and cortical  stations  will  automatically  adapt  to changes  both in mean
sound level and in sound level “contrast” or variability, so that features like formants are efficiently
encoded whatever the current acoustic environment happens to be (Dean et al. 2005; Rabinowitz et al.
2013; Willmore et al. 2016). 
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Figure 4: Waveform (top), spectrogram (middle) and simulated LSR auditory 
nerve fiber neurogram of the spoken word “head”[hɛːd].
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As we have seen earlier, the tonotopic representation of speech sound spectra in the auditory nerve
provides much information about speech formants, but not a great deal about harmonics which would
reveal voicing or voice pitch. We probably owe much of our ability to nevertheless hear voicing and
pitch  easily  and with  high accuracy to  the  fact  that,  in  addition  to  the  small  number  of  resolved
harmonics, the auditory nerve delivers a great deal of so called “temporal fine structure information” to
the brain. To appreciate what is meant by that, consider Figure 4, which shows the waveform (top), a
spectrogram (middle) and an auditory nerve neurogram display (bottom) for a recording of the spoken
word “head”. The neurogram was produced by computing firing rates of a bank of LSR auditory nerve
fibers in response to the sound as a function of time using the model by  Zilany et al. (2014). The
waveform reveals  the  characteristic  “energy arc”  remarked upon by  Greenberg  (2006) for  spoken
syllables, with a relatively loud vowel flanked by relatively much quieter consonants. The voicing in
the vowel is manifest in the large sound pressure amplitude peaks, which arise from the glottal pulse
train, and which arise at regular interval of approximately 7 ms, that is a rate of approximately 140 Hz.
This voice pitch is also reflected in the harmonic stack in the spectrogram, with harmonics at multiples
of ~ 140 Hz, but this harmonic stack is not apparent in the neurogram. Instead we see that the nerve
fiber responses rapidly modulate their firing rates to produce a temporal pattern of “bands” at time
intervals which either directly reflect the 7 ms interval of the glottal pulse train (for nerve fibers with
CFs below 0.2 kHz or above 1 kHz) or at intervals which are integer fractions (harmonics) of the
glottal pulse interval. In this manner auditory nerve fibers convey important cues for acoustic features
such as periodicity pitch by “phase locking” their discharges to salient features of the temporal fine
structure of speech sounds with sub-millisecond accuracy. 

As an aside, note that it is quite common for severe hearing impairment to be caused by an extensive
loss of auditory hair cells in the cochlea, which can leave the auditory nerve fibers largely intact. In
such patients it is now often possible to restore some hearing through cochlear implants which use
electrode  arrays  implanted  along  the  tonotopic  array  to  deliver  direct  electrical  stimulation  to  the
auditory nerve fibers. The electrical stimulation patterns delivered by the twenty-odd electrode contacts
provided by these devices are quite crude compared to the activity patterns created when the delicate
dance of the basilar membrane is captured by some 3000 phenomenally sensitive auditory hair cells,
but because coarsely resolving only a modest number of formant peaks is normally sufficient to allow
speech sounds to be discriminated, the large majority of deaf cochlear implant patients do gain the
ability to have pretty normal spoken conversations – as long as there is little background noise. Current
cochlear implant processors are essentially incapable of delivering any of the temporal fine structure
information which we have just described via the auditory nerve, and consequently cochlear implant
users miss out on things like periodicity pitch cues which might help them separate out voices in a
cluttered auditory scene. A lack of temporal fine structure can also affect the perception of dialect and
affect in speech, as well as melody, harmony and timbre in music. 
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3. Subcortical pathways

As we have seen in Figure 1, the neural activity patterns we have just described are passed on first to
the cochlear nuclei, and from then on through the superior olivary nuclei to the midbrain, thalamus and
primary auditory cortex. We had also mentioned that each of these stations of the lemniscal auditory
pathway has a tonotopic structure, so all we have learned in the previous section about tonotopic arrays
of neurons representing speech formant patterns “neurogram style” thankfully still applies at each of
these stations. But that is not to say that the neural representation of speech sounds does not undergo
some transformations along these pathways.  For example,  the cochlear  nuclei  contain a  variety of
different  neural  cell  types  which  receive  different  types  of  converging inputs  from auditory  nerve
fibers, which may make them more or less sensitive to certain acoustic cues. So called “octopus” cells,
for example, will collect inputs across a number of fibers across an extent of the tonotopic array, which
will  make them less sharply frequency tuned,  but  more sensitive to  the temporal  fine structure of
sounds such glottal pulse trains  (Golding and Oertel 2012). So called “bushy” cells in the cochlear
nucleus are also very keen on maintaining temporal fine structure encoded in the timing of auditory
nerve  fiber  inputs  with  very  high  precision,  and  passing  this  information  on undiminished  to  the
superior olivary nuclei (Joris et al. 1998). The nuclei of the superior olive receive converging (and, of
course, tonotopically organized), inputs from both ears, which allows them to compute binaural cues to
the direction that sounds may have come from (Schnupp and Carr 2009). Thus, firing rate distributions
among neurons in the superior olive, and in subsequent processing stations, may provide information
not just about formants or voicing of a speech sound, but also about whether the speech came from the
left or right or straight ahead. This adds further “dimensions” to the neural representation of speech
sounds in the brainstem, but much of what we have seen still  applies: formants are represented by
peaks of activity across the tonotopic array, and stimulus temporal fine structure is represented by the
temporal fine structure of neural firing patterns. However, while the tonotopic representation of speech
formants remains preserved throughout the subcortical pathways up to and including in the primary
auditory cortex, temporal fine structure at fast rates of up to several hundred Hz is not preserved much
beyond the superior olive. Maintaining sub-milisecond precision of firing patterns across a chain of
chemical synapses and neural cell membranes which typically have temporal jitter and time constants
in the milisecond range is not easy. To be up to the job, neurons in the cochlear nucleus and olivary
nuclei have specialized synapses and ion channels which “more ordinary” neurons in the rest of the
nervous system lack. 

It is therefore generally thought that temporal fine structure cues to aspects such as the periodicity pitch
of voiced speech sounds become “recoded” as one ascends the auditory pathway beyond the brainstem.
Thus, from about the inferior colliculus onward, temporal fine structure at fast rates is increasingly less
represented  though  fast  and  highly  precise  temporal  firing  patterns,  but  instead  through  neurons
becoming “periodicity tuned” (Frisina 2001), meaning that their firing rates may vary as a function of
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the fundamental frequency of a voiced speech sound, in addition to depending on the amount of sound
energy in a particular frequency band. Some early work on periodicity tuning in the inferior colliculus
has led to the suggestion that this structure may even contain a “periodotopic map”  (Schreiner and
Langner 1988),  with neurons tuned to different periodicities arranged along an orderly  “periodotopic
axis” running thought the whole length of the inferior colliculus, and with the periodotopic gradient
more or less orthogonal to the tonotopic axis. Such an arrangement would be rather neat: periodicity
being a major cue for sound features such as voice pitch,  a periodotopic axis might,  for example,
physically separate out the representations of voices which differ substantially in pitch. But while some
later neuroimaging studies seemed to support the idea of a periodotopic map in the inferior colliculus
(Baumann et al. 2011), more recent, very detailed and comprehensive recordings with microelectrode
arrays have shown conclusively that there are no consistent periotopic gradients running the width,
breadth or depth of the inferior colliculus  (Schnupp et al. 2015), nor are such periodotopic maps a
consistent feature of primary auditory cortex (Nelken et al. 2008).

Thus, tuning to periodicity (and, by implication, voicing and voice pitch), as well as to cues for sound
source direction, is widespread among neurons in the lemniscal auditory pathway from at least the
midbrain  upwards,  but  neurons  with  different  tuning  properties  appear  to  be  arranged  in  clusters
without much over-arching systematic order, and their precise arrangement can differ greatly from one
individual to the next. Thus, neural populations in these structures are best thought of as a patchwork of
neurons  which  are  sensitive  to  multiple  features  of  speech  sounds,  including  pitch,  sound  source
direction and formant  structure  (Bizley et  al.  2009; Walker  et  al.  2011),  without  much discernible
overall anatomical organization other than tonotopic order. 

4. Primary auditory cortex

So far, in the first half of this chapter we have talked about how speech is represented in the inner ear,
auditory nerve, and along the subcortical pathways. However, in order for speech to be perceived, the
percolation of auditory information must reach the cortex. Etymologically, the word “cortex” is Latin
for rind, which is fitting as the cerebral cortex covers the outer surface of the brain – much like a rind
overs your favorite citrus fruit. Small mammals like mice and trees shrews are endowed with relatively
smooth cortices, while the cerebral cortices of larger mammals including humans (Homo sapiens)—but
even  more  impressively,  African  bush  elephants  (Loxodonta  africana)—exhibit  a  high  degree  of
cortical “folding” (Prothero and Sundsten 1984). The more folded, wrinkled, or crumpled your cortex,
the more surface area can fit into your skull. This is important because a larger cortex (relative to body
size)  means more neurons,  and more neurons generally means more computational power  (Jerison
1973). For  example,  in  difficult  noisy  listening  conditions,  the  human  brain  appears  to  recruit
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additional cortical regions  (Davis and Johnsrude 2003) which we shall come back to in the next few
sections. In this section, we begin our journey through the auditory cortex by touching on the first
cortical areas to receive auditory inputs: the “primary auditory cortex”.

Anatomy and tonotopicity of the human primary auditory cortex

In humans the primary auditory cortex (A1) is located around a special wrinkle in the cortical sheet,
known as “Heschl’s gyrus” (HG). A gyrus, by the way, is the word used to describe a “ridge” where the
cortical sheet is folded outward, while a sulcus describes an inward fold or valley. There are in fact
multiple HG in each brain. First, all people have at least two HG, one in each cerebral hemisphere (the
left  and right  halves  of  the  visible  brain).  These  are  positioned along the  superior  aspect  of  each
temporal  lobe.  In  addition,  some brains  have  a  duplication  in  the  HG,  meaning that  one  or  both
hemispheres will have two ridges instead of one (Da Costa et al. 2011). This anatomical factoid can be
useful for identifying A1 in real brains (as we shall see in Figure 5). However, the gyri are only used as
landmarks: what matters is the sheet of neurons in and around HG, not whether that area is folded once
or twice. This sheet of neurons area receives connections from the subcortical auditory pathways, most
prominently via the medial geniculate body of the thalamus (see  Figure  1 and the previous section).
When the cortex is smoothed,  in silico,  using computational image processing, the primary auditory
cortex can be shown to display the same kind of tonotopic maps that we observed in the cochlea and in
subcortical  regions.  This  has  been  known  from  invasive  microelectrode  recordings  in  laboratory
animals for decades and can be confirmed to also be the case in humans using non-invasive MRI
(Magnetic Resonance Imaging) by playing subjects stimuli at different tones and then modeling the
optimal  cortical  responses to each tone.  This use of functional  MRI (fMRI) results  in  the kind of
tonotopic maps shown in Figure 5. 

Figure 5 depicts a flattened view of the left-hemisphere cortex colored in dark gray. Superimposed onto
the flattened cortex is a tonotopic map (grayscale corresponding to the color bar on the bottom right).
Over the surface of the tonotopic map, each point has a preferred stimulus frequency, in Hz, and if we
follow the dotted arrow across HG, we find a gradient pattern of responses  corresponding to low
frequencies, high frequencies, and then low frequencies again. Given this tonotopic organization of the
primary auditory cortex, which is in some respects not that different from the tonotopy seen in lower
parts  of the auditory system, we might therefore expect the nature of the representation of sounds
(including speech sounds) in this structure to be still to a large extent “spectrogram like”, that is, if we
were to read out the firing rate distributions along the frequency axes of these areas while speech
sounds are represented, then this “neurogram” of activity would exhibit dynamically shifting peaks and
troughs that reflect the changing formant structure of the presented speech. That this is indeed the case
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has been shown in animal experiments by  Engineer et  al.  (2008),  who, in one set  of experiments,
trained  rats  to  discriminate  a  large  set  of  consonant-vowel  syllables,  and  in  another  recorded
neurograms  for  the  same  set  of  syllables  from  the  primary  cortices  of  anesthetized  rats  using
microelectrodes. They found, firstly, that rats can learn to discriminate most American English syllables
easily, but are more likely to confuse syllables which humans too might find more similar and easier to
confuse (e.g. “sha” vs “da” is easy, but “sha” vs “cha” is harder). Second,  Engineer et al. found that
how easily rats can discriminate between two speech syllables can be predicted by how different the
primary auditory cortex neurograms for these syllables are. 

Figure 5: Tonotopic map. HG = Heschl’s Gyrus; STG = Superior Temporal Gyrus; SG =
Supramarginal Gyrus; Hz = Hertz. Figure adapted with permission from Humphries et al. (2010).
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These  data  would  suggest  that  the  representation  of  speech  in  primary  auditory  cortex  is  still  a
relatively “unsophisticated” time-frequency representation of sound features, with very little in the way
of recognition or categorization or interpretation. Calling primary auditory cortex unsophisticated is,
however,  probably  doing  it  an  injustice,  however,  because  other  animal  experiments  indicate  that
neurons  in  primary  auditory  cortex  can,  for  example,  change  their  frequency  tuning  quickly  and
substantially if a particular task requires attention to be directed to a particular frequency band (Edeline
et al. 1993; Fritz et al. 2003). Primary auditory cortex neurons can even become responsive to stimuli
or events that aren’t auditory at all if these events are firmly associated with sound related tasks that an
animal has learned to master (Brosch et al. 2005). Nevertheless, it is currently thought that the neural
representations  of  sounds  and  events  in  primary  auditory  cortex  are  probably  based  on  detecting
relatively simple acoustic features, and are probably not specific to speech or vocalizations, given that
primary cortex does not seem to have any obvious preference for speech over non-speech stimuli. In
the human brain, to find the first indication of areas that appear to prefer speech stimuli to other, non-
speech sounds, one must move beyond the tonotopic maps of the primary auditory cortex (Belin et al.
2000; Scott et al. 2000). 

In the next few sections we will continue our journey through the auditory system into cortical regions
that  appear  to  make specialized  contributions  to  speech processing,  and which  are  situated  in  the
temporal, parietal and frontal lobes. We will also talk about how these regions communicate with each
other in noisy contexts and during self-generated speech, when information from the (pre-)motor cortex
influences  speech  perception,  and  we  will  talk  about  representations  of  speech  in  time.  Figure  6
introduces the regions and major connections to be discussed. You may want to refer back to it at times.
In brief, we will consider the superior temporal gyrus (STG), the premotor cortex (PMC), and then loop
back into the STG to discuss how brain regions in the auditory system work together as part  of a
dynamic network.
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5. What does “higher order” cortex add? 

All of the systems that we have reviewed so far on our journey along the auditory pathway have been
general auditory processing systems. So, although important for speech processing, their function is not
speech specific. For example the cochlea converts pressure waves into electrical impulses, whether the
pressure waves encode a friendly “hello” or the sound of falling rain; the subcortical pathways process
and propagate these neural  signals  to  the primary auditory cortex,  in  ways that  do not depend on
whether they encode a phone conversation or barking dogs or noisy traffic; and the primary auditory
cortex exhibits a tonotopic representation of an auditory stimulus, whether that stimulus was an extract
of a Shakespearean soliloquy or of Ravel’s Boléro. In this section, we encounter a set of cortical areas
that preferentially process speech over other kinds of auditory stimuli. We will also describe deeply
revealing  new  work  into  the  linguistic/phonetic  representation  of  speech,  obtained  using  surgical
recordings in human brains. 
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Figure 6: A map of cortical areas involved in the auditory representation of speech. PAC = Primary
Auditory Cortex; STG = Superior Temporal Gyrus; aSTG = anterior STG; pSTG = posterior STG; 
IFG = Inferior Frontal Gyrus; PMC = Pre-Motor Cortex; SMC = Sensori-Motor Cortex; IPL = 
Inferior Parietal Lobule. Dashed lines indicate medial areas. Adapted with permission from 
Rauschecker and Scott (2009). 



Speech preferential areas

That areas of the brain exist which are necessary for the understanding of speech, but not for general
sound perception, has been known since the 19th century, when the German neurologist, Carl Wernicke,
associated the  aphasia  that  bears  his  name with damage to the  STG  (Wernicke  1874).  Wernicke’s
eponymous area was, incidentally, reinterpreted by later neurologists to refer only to the posterior third
of the STG and adjacent parietal areas (Bogen and Bogen 1976), although some disagreement about its
precise boundaries continues until this day (Tremblay and Dick 2016). 

With the advent of fMRI at the end of the 20th century, the posterior STG was confirmed to respond
more strongly to vocal sounds than to non-vocal sounds (e.g. speech, laughter, or crying as compared to
the sounds of  wind,  galloping,  or  cars)  (Belin et  al.  2000).  Neuroimaging also revealed a  second,
anterior area in the STG, which responds more to vocal than to non-vocal sounds (Belin et al. 2000).
These voice-preferential areas can be found in both hemispheres of the brain. Additional studies have
shown that it is not just the voice but also intelligible speech that excites these regions, although with
speech processing being more specialized in the left  hemisphere  (Scott  et  al.  2000).  Anatomically,
anterior and posterior STG receive white-matter connections from the primary auditory cortex, and in
turn feed two auditory processing streams, one antero-ventral, which extends into the inferior frontal
cortex, and another postero-dorsal that curves into the inferior parietal lobule. The special function of
these streams remains a matter of debate. For example, Rauschecker and Scott (2009) propose that the
paths differ in processing “what” and “where” information in the auditory signal, where “what” refers
to recognizing the cause of the sound (e.g. it’s a thunderclap) and “where” to locating the sound’s
spatial  location (e.g.  to  the west).  Another,  more linguistic suggestion is  that the ventral  stream is
broadly semantic, whereas the dorsal stream might be described as more phonetic in nature  (Hickok
and Poeppel 2004). Whatever the functions,  however,  there do appear to be two streams diverging
around the anterior and posterior STG. 

Over the years, these early STG results have been replicated many times using neuroimaging  (Price
2012).  Each  technique  for  observing  activity  of  the  human  brain,  whether  non-invasive
magnetoencephalography  (MEG)  or  functional  magnetic  resonance  imaging  (fMRI),  or  invasive,
surgical  techniques  like  electrocorticography (ECoG),  described in  the  next  section,  all  have  their
respective  limitations  and  shortcomings.  It  is  therefore  reassuring  that  the  insights  into  the
neuroanatomy of speech comprehension established by methods like MEG or fMRI, which can image
the whole brain, are both confirmed and extended by studies using targeted surgical techniques like
ECoG. 
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Auditory phonetic representations in the superior temporal gyrus

ECoG, which involves the placement of electrodes directly onto the surface of the brain, cannot easily
record from the primary auditory cortex. This is because the primary auditory cortex is tucked away
inside the Sylvian fissure, along the dorsal aspect of the temporal lobe. On the other hand, because
ECoG measures the summed post-synaptic electrical current of neurons with millisecond resolution, it
is sensitive to rapid neural responses at the timescale of individual syllables, or even individual phones.
By contrast fMRI measures hemodynamic responses; these are changes in blood flow which are related
to neural activity but occur on the order of seconds. In recent years, the use of ECoG has revolutionized
the study of speech in auditory neuroscience.  An exemplar of this  can be found in a recent paper
(Mesgarani et al. 2014).

Mesgarani et al. (2014) used ECoG to learn about the linguistic/phonetic representation of auditory
speech processing in the STG of six epileptic patients. These patients listened passively to spoken
sentences taken from the TIMIT corpus (Garofolo et al. 1993), while ECoG was recorded from their
brains.  These ECoG recordings were then analyzed to discover patterns in the neural responses to
individual speech sounds (for a summary of the experimental setup, see Figure  7, panels A-C). The
authors used a phonemic analysis of the TIMIT dataset to group the neural responses, at each electrode,
according to the phoneme that caused it.  For examples see panel D of Figure  7, which allows the
comparison of responses to different speech sounds for a number of different sample electrodes labeled
e1 to e5. The key observation here is that an electrode like e1 gives similar responses for /d/ and /b/ but
not for  /d/ and /s/, and the responses at each of the electrodes shown will respond strongly for some
groups of speech sounds, but not others. Given these data we can ask the following questions. Do STG
neurons group, or “classify”, speech segments through the similarity of their response patterns? And if
so, which classification scheme do they use? 

Linguists and phoneticians often analyze individual speech sounds into “feature” classes, based, for
example, on either the “manner” or the “place of articulation” that is characteristic for that speech
sound. Thus, /d/, /b/, and /t/ are all members of the “plosive” manner of articulation class because they
are produced by an obstruction followed by a sudden release of air through the vocal tract, and /s/
and /f/ belong to the “fricative” class because both are generated by turbulent air hissing through a tight
constriction in the vocal tract. At the same time,  /d/ and /s/ also belong to the “alveolar”  place of
articulation class because for both phonemes the tip of the tongue is brought up toward the alveolar
ridge just behind the top row of the teeth. In contrast, /b/ has a “labial” place of articulation because to
articulate /b/ the airflow is constricted at the lips. Manner features are usually associated with particular
acoustic characteristics. Plosives involve characteristically brief intervals of silence followed by a short
noise burst, while fricatives exhibit sustained aperiodic noise spread over a wide part of the spectrum.
Classifying speech sounds by place and manner of articulation is certainly very popular among speech
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scientists, and is also implied in the structure of the international phonetic alphabet (IPA), but it is by
no means the only possible scheme. Speech sounds can also be described and classified according to
alternative acoustic properties or perceptual features, such as loudness and pitch. An example feature
that is harder to characterize in articulatory or acoustic terms is “sonority”. Sonority defines a scale of
perceived loudness (Clements 1990) such that vowels are the most sonorous, glides are the next most
sonorous, then liquids, nasals, and finally obstruents (i.e. fricatives and plosives). Despite the idea of
sonority as a multi-tiered scale, phonemes are sometimes lumped into two groups of sonorant and non-
sonorant, with everything but the obstruents counting as sonorants.

As these examples illustrate, there could in principle be many different ways in which speech sounds
are grouped. To ask which grouping is “natural” or “native” for the STG, Mesgarani et al. (2014) used
hierarchical clustering of neural responses to speech, examples of which can be seen in the ECoG
recordings depicted in Figure  7, panel D. The results of the clustering analysis follows in Figure  7,
panels  E-G.  Perhaps surprisingly,  Mesgarani  et  al.  (2014) discovered that  the  STG was organized
primarily  by manner  of articulation features and secondarily  by place of  articulation features.  The
prominence of manner of articulation features can be seen by clustering the phonemes directly (Figure
7F).  For  example,  on  the  right-side  dendrogram we  find  neat  clusters  of  plosives  /d  b  g  p  k  t/,
fricatives /ʃ z s f θ/, and nasals /m n ŋ/. Manner of articulation features also stand out when the electrodes
are clustered (Figure 7G). By following a column up, from the bottom dendrogram, one can find the
“darkest” cells (those with the greatest selectivity for phonemes) and then follow these rows to the left
to identify the phonemes to which the electrode signal was strongest. The electrode indexed by the
leftmost column, for example, recorded neural activity that appeared selective for the plosives /d b g p
k t/. In this way, one may also find electrodes that respond to both manner and place of articulation
features. For example, the fifth column from the left responds to the bilabial plosives /b p/. Thus, the
types of features that phoneticians have for a long time employed for classifying speech sounds turn out
to be reflected in the criteria by which neural responses across the STG can be shown to group speech
sounds. Mesgarani et al. (2014) argue that this pattern of organization, prioritizing manner over place
of  articulation  features,  is  most  consistent  with  auditory-perceptual  theories  of  feature  hierarchies
(Stevens 2002; Clements 1985). Auditory-perceptual theories contrast, for instance, with articulatory or
gestural  theories,  which  Mesgarani  et  al.  (2014) assert  would  have  first  prioritized  the  place  of
articulation features (Fowler 1986). 
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Figure 7: Feature-based representations in the human STG. Panel A shows left hemisphere cortex with black dots indicating 
ECoG electrodes. B shows an example acoustic stimulus (“and what eyes they were”), including orthography, waveform, 
spectrogram, and IPA transcription. C shows time-aligned neural responses to the acoustic stimulus. The electrodes (y-axis) 
were sorted spatially (anterior-to-posterior), with time (in seconds) along the x-axis. D shows sample phoneme responses by 
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electrode. For five electrodes (e1, …, e5), the plots show cortical selectivity for English phonemes (y-axis) as a function of time 
(x-axis) with phoneme onsets indicated by vertical dashed lines. The Phoneme Selectivity Index (PSI) is a summary over time of 
how selective the cortical response is for each phoneme. E shows phoneme responses (PSIs) for all electrodes, arranged for 
hierarchical clustering analyses. F and G show clustering analyses by phoneme and by electrode. These show how phonemes 
and electrodes are grouped, respectively, with reference to phonetic features. For example, F shows that electrodes can be 
grouped by selectivity to obstruents and sonorants. Adapted from Mesgarani et al. (2014) with permission of the publisher.

The clustering analyses in Figure 7 (panels F and G) are doubly rich: they at the same time support a
broadly auditory-perceptual view of sound representations in the STG while also revealing limitations
of that view. For instance, on the right-side cluster (panel F), we find that the phonemes /v/ and /ð/ do
not  cluster with the other  fricatives /ʃ  z  s  f  θ/.  Instead these fricatives,  /v/  and /ð/,  cluster with the
sonorants. Moreover, /v/ and /ð/ are most closely clustered in a group of high front and central vowels
and glides /j  ɪ i ʉ/. This odd-grouping might reflect noise at some level of the experiment or analysis,
however it raises the intriguing possibility that the STG actually groups /j ɪ i ʉ v ð/ together, and thus
does not strictly follow established phonetic conventions. Therefore in addition to articulatory, acoustic,
and  auditory  phonetics,  studies  like  this  on  the  cortical  response  to  speech  may pave  the  way to
innovative neural feature analyses. We would however like to emphasize that these are early results in
the  field.  The use  of  discrete  segmental  phonemes  may,  for  example,  be considered a  useful  first
approximation to analyses using more complex, overlapping feature representations. 

Auditory phonetic representations in the sensory-motor cortex

From the STG, we turn now to a second cortical area. The vSMC, or ventral sensory-motor cortex, is
better known for its role in speech production than speech comprehension (Bouchard et al. 2013). This
part  of  cortex,  near  the  ventral  end  of  the  SMC (see  Figure  6),  contains  the  primary  motor  and
somatosensory  areas,  which  send  motor  commands  to  and  receive  touch  and  proprioceptive
information  from the  face,  lips,  jaw,  tongue,  velum,  and pharynx.  The vSMC plays  a  key role  in
controlling  the  muscles  associated  with  these  articulators,  and  is  further  involved  in  monitoring
feedback from the sensory nerves in these areas when we speak. Less widely known is that vSMC also
plays  a  role  in  speech  perception.  We know,  for  example,  that  a  network  including  frontal  areas
becomes more active when the conditions for perceiving speech become more difficult  (Davis and
Johnsrude 2003), such as when there is background noise or the sound of multiple speakers overlaps
(contrast  easy  listening  conditions  when  distractions  like  these  are  absent).  This  context-specific
recruitment  of  speech  production  areas  might  signal  that  they  play  an  “auxiliary  role”  in  speech
perception,  by providing additional computational resources when the STG is overburdened. As an
auxiliary auditory system, which is primarily dedicated to coordinating the articulation of speech, we
might ask how the vSMC represents heard speech. Does the vSMC represent the modalities of overt
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and heard speech similarly or differently? Is the representation of heard speech in the vSMC similar or
different to that of the STG?

ECoG studies of speech production  (Bouchard et al. 2013; Cheung et al. 2016) suggest that  place of
articulation features  take primacy over the manner of articulation features  in the vSMC, which is the
reverse of what we described above for the STG (Mesgarani et al. 2014). Given that vSMC contains a
map of body parts like the lips and tongue, it makes sense that this region be represented by place of
articulation features,  rather than by manner of articulation features. But does this  representation in
vSMC hold during both speech production and comprehension? Our starting hypothesis might be that,
yes, the feature representations in vSMC will be the same regardless of task. There is even some theory
to back this up. For example, there have been proposals, like the motor theory of speech perception
(Liberman et al.  1967; Liberman and Mattingly 1985) or the analysis-by-synthesis  theory  (Stevens
1960) that view speech perception as a kind of active rather than passive process. Analysis-by-synthesis
says that speech perception involves trying to match what you hear to what your own mouth, and other
articulators,  would  have  needed  to  do  to  produce  what  you  heard.  Speech  comprehension  would
therefore involve the active process of covert speech production. Following this line of thought, we
might suppose that what the vSMC does, when it is engaged in deciphering what your friend is asking
you at a noisy cocktail party, is in some sense the same as what the vSMC does when it is used to
articulate your reply. Because we know that place of articulation features take priority over manner of
articulation  features  in  the  vSMC  during  a  speech-production  task  (i.e.  reading  consonant-vowel
syllables aloud), we might hypothesize that place of articulation features will similarly take primacy
during passive listening. Interestingly, despite being predicted by theory, this prediction is wrong.

When Cheung et al. (2016) examined neural response patterns in the vSMC while subjects listened to
recordings of speech, they found that, as in the STG, it was the  manner of articulation  features that
took precedence. In other words, representations in vSMC were conditioned by task: during speech
production the vSMC favored place of articulation features (Bouchard et al. 2013; Cheung et al. 2016);
but during speech comprehension, the vSMC favoured manner of articulation features (Cheung et al.
2016). As we discussed above, the STG is also organised according to manner of articulation features
when subjects listen to speech (Mesgarani et al. 2014). Therefore the representations in these two areas,
STG and vSMC, appear to use a similar type of code when they represent heard speech. 

To be more concrete,  Cheung et  al.  (2016) recorded ECoG from the STG and vSMC of  subjects
performing two tasks. One task involved reading aloud from a list of consonant-vowel syllables (e.g.
“ba”,  “da”,  “ga”),  while  the  other  task  involved listening to  recordings  of  people producing these
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syllables. Instead of using hierarchical clustering like Mesgarani et al. (2014) did in their study of the
STG, Cheung et al. (2016) used a dimensionality-reduction technique called multidimensional scaling
(MDS) but with the similar goal of describing the  structure  of phoneme representations in the brain
during each task (Figure 8). For the speaking task, the dimensionality-reduced vSMC representations
for  eight  sounds  could  be  linearly  separated  into  three  place  of  articulation  features:  labial  /p  b/,
alveolar /t d s  ʃ/, and velar /k g/ (see Figure  8, panel D). The same phonemes could not be linearly
separated into place of articulation features in the listening task (Figure 8, panel E), however they could
be linearly separated into another set of features (Figure 8, panel G): voiced plosives /d g b/, voiceless
plosives /k t p/, and fricatives /ʃ s/. These are the same manner of articulation and voicing features that
characterize the neural responses in STG to heard speech (Figure 8, panel F). Again, the implication is
that the vSMC has two codes for representing speech, suggesting that there are either two distinct but
anatomically-intermingled neural populations in vSMC, or the same population of neurons is capable
of operating in two very different representational modes. Unfortunately, the spatial resolution of ECoG
electrodes is still too coarse to resolve this ambiguity, so other experimental techniques will be needed.
For  now,  we can  only  say  that  during  speech  production,  the  vSMC uses  a  feature  analysis  that
emphasizes place of articulation features, but during speech comprehension, the vSMC uses a feature
analysis  that  instead  emphasizes  manner  features  and voicing.  An intriguing possibility  is  that  the
existence of similar representations for heard speech in STG and vSMC may play an important role in
the communication, or connectivity, between distinct cortical regions—a topic we touch on in the next
section.
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6. Systems-level representations and temporal prediction

Our  journey  through  the  auditory  system  has  focused  on  specific  regions,  and  on  the  auditory
representation  of  speech in  these  regions.  However  representations  in  the  brain  are  not  limited  to
isolated islands of cells, but also rely upon constellations of regions that relay information within a
network.  In  this  section,  we touch briefly  on the  topic  of  systems-level  representations  of  speech
perception and on the related topic of temporal prediction, which is at the heart of why we have brains
in the first place.

Parker Jones & Schnupp
https://doi.org/10.1002/9781119184096.ch3

Page 26

Figure 8: Feature-based representations in the human sensori-motor cortex. A and B show the most
significant electrodes (gray dots) for the listening and speaking tasks. C presents a feature analysis 
of the consonant phonemes used in the experiments. The left phoneme in each pair is unvoiced and 
the right phoneme is voiced (e.g. /p/ is unvoiced and /b/ is voiced). D-G are discussed in the main 
text; each panel shows a low-dimensional projection of the neural data where distance between 
phoneme representations is meaningful (i.e. phonemes that are close to each other are represented 
similarly in the neural data). The dotted lines show how groups of phonemes can be linearly 
separated (or not) according to place of articulation, manner of articulation, and voicing features. 
Figure adapted with permission from Cheung et al. (2016). 



Auditory feedback networks

One  way  to  appreciate  the  dynamic  interconnectedness  of  the  auditory  brain  is  to  consider  the
phenomenon of auditory suppression. Auditory suppression manifests, for example, in the comparison
of STG responses when we listen to another person speak and when we speak ourselves, and thus hear
the sounds we produce. Electrophysiological studies have shown that auditory neurons are suppressed
in monkeys during self vocalization (Müller-Preuss and Ploog 1981; Eliades and Wang 2008; Flinker et
al. 2010). This finding is consistent with fMRI and ECoG results in humans, showing that activity in
the  STG is  suppressed  during speech production  compared to  speech comprehension  (Eliades  and
Wang 2008; Flinker et al. 2010). The reason for this auditory suppression is thought to be an internal
signal (“efference copy”) received from another part of the brain, such as the motor or premotor cortex,
which has “inside information” about external stimuli when those external stimuli are self-produced
(von Holst and Mittelstaedt 1950). The brain’s use of this kind of inside information is not, incidentally,
limited to the auditory system. Anyone who has failed to tickle themselves has experienced another
kind  of  sensory  suppression,  again  thought  to  be  based  on  internally-generated  expectations
(Blakemore et al. 2000).

Auditory suppression in the STG is also a function of language proficiency. As an example,  Parker
Jones et al. (2013) explored the interactions between pre-motor cortex (PMC) and two temporal areas
(sSTG and pSTG) when native and non-native English speakers performed speech-production tasks
such as reading and picture naming in an MRI scanner. The fMRI data were then subjected to a kind of
connectivity analysis, which can tell you which regions influenced which other regions of the brain.
Technically, the observed signals were deconvolved to model the effect of the hemodynamic response,
and the underlying neural dynamics were inferred by inverting a generative model based on a set of
differential equations (Friston et al. 2003; Daunizeau et al. 2011). A positive connection between two
regions, A and B, means that when the response in A is strong, the response in B will increase (i.e. B
will have a positive derivative). Likewise, a negative connection means that when the response in A is
strong, the response in B will  decrease  (B will have a negative derivative). Between the PMC and
temporal auditory areas, Parker Jones et al. (2013) observed significant negative connections, implying
that brain-activity in the PMC caused a decrease in auditory temporal activity consistent with “auditory
suppression”. However auditory suppression was only observed in the native English speakers. In non-
native speakers, there was no significant auditory suppression, but there was a positive effect between
pSTG and PMC consistent with the idea of “error feedback”.  The results  suggest that PMC sends
signal-canceling, top-down predictions to aSTG and pSTG. These top-down predictions are stronger if
you are a native speaker and more confident about what speech sounds you produce. In non-native
speakers, the top-down predictions cancelled less of the auditory input, and a bottom-up learning signal
(“error”) was fed back from the pSTG to the PMC. Interestingly, as the non-native speakers became
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more proficient, the learning signals were observed to decrease, so that the most highly-proficient non-
native speakers were indistinguishable from native speakers in terms of error feedback.

The example of auditory suppression argues for a systems-level view of speech comprehension that
includes both auditory and premotor regions of the brain. Theoretically, we might think of these regions
as being arranged in a functional hierarchy, with PMC located above both aSTG and pSTG. “Top-
down” predictions may thus be said to descend from PMC to aSTG and pSTG, while “bottom-up”
errors percolate in the opposite direction, from pSTG to PMC. We note that the framework used to
interpret the auditory suppression results, “predictive coding”, subtly inverts the view that perceptual
systems in the brain passively extract knowledge from the environment; instead, it proposes that these
systems are actively trying to predict  their  sense experiences  (Ballard et  al.  1983; Mumford 1992;
Kawato  et  al.  1993;  Dayan  et  al.  1995;  Rao  and  Ballard  1999;  Friston  and  Kiebel  2009).  In  a
foundational sense, predictive coding frames the brain as a forecasting machine, evolved to minimize
surprises and to anticipate, and not merely react to, events in the world (Wolpert et al. 2001). This is not
to say that people are necessarily prediction machines but rather to conjecture that perceptual systems
in our brains, at least sometimes, predict sense experiences.

Temporal prediction

The importance of “prediction” as a theme and as a hypothetical explanation for neural function also
goes beyond explicit modeling in neural networks. We can invoke the idea of temporal prediction even
when we do not know about the underlying connectivity patterns. Speech, for example, does not consist
of a static set of phonemes. Rather speech is a continuous sequence of events, such that hearing part of
the sequence gives you information about  other  parts  that  you have yet  to hear.  In phonology the
sequential dependency of phonemes is called “phonotactics” and can be viewed as a kind of prediction.
That is, if the sequence /st/ is more common than /sd/, because /st/ occurs in syllabic onsets, then it can
be said that /s/ predicts /t/ (more than /s/ predicts /d/). This use of phonotactics for prediction is made
explicit in machine learning, where predictive models (e.g. bigram and trigram models historically, or,
more  recently,  recurrent  neural  networks)  have  played  an  important  role  in  the  development  and
commercial use of speech-recognition technologies (Jurafsky and Martin 2014; Graves & Jaitly 2014). 

In  neuroscience,  the  theme  of  prediction  comes  up  in  “masking”  and  “perceptual  restoration”
experiments. One remarkable ECoG study, by  Leonard et  al.  (2016), played subjects recordings of
words in which key phonemes were masked by noise. For example, a subject might have heard /fæ#tr/,
where the /#/ symbol represents a brief noise burst masking the underlying phoneme. In this example,
the  intended  word  is  ambiguous:  it  could  have  been  /fæstr/  ‘faster’ or  /fæktr/  ‘factor’.  So,  by
controlling  the  context  in  which  the  stimulus  was  presented,  Leonard  et  al.  (2016) were  able  to
manipulate subjects to hear one word or another. In the sentence “On the highway he drives his car
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much /fæ#tr/”, we expect the listener to perceive the word /fæstr/ ‘faster’. In another sentence, that
expectation was modified so that  subjects  perceived the same noisy segment  of  speech as /fæktr/
‘factor’.  Leonard et al. (2016) then used a technique called “stimulus reconstruction”, by which it is
possible to infer rather good speech spectrograms from intracranial recordings (Mesgarani et al. 2008;
Pasley et al. 2012). Spectrograms reconstructed from masked stimuli showed that the STG had “filled
in” the missing auditory representations (Figure 9). For example, when the context was modulated so
that subjects perceived the ambiguous stimulus as /fæstr/ ‘faster’, the reconstructed spectrogram was
shown to contain an imagined fricative [s] (Figure  9, panel E). When subjects perceived the word
as /fæktr/ ‘factor’, the reconstructed spectrogram contained an imagined stop [k] (Figure 9, panel F). In
this way,  Leonard et al. (2016) demonstrated that auditory representations of speech are sensitive to
their temporal context.

In addition to “filling in” missing phonemes, the idea of temporal prediction can be invoked as an
explanation  of  how  the  auditory  system  accomplishes  one  of  its  most  difficult  feats:  “selective
attention”. Selective attention is often alluded to as the “cocktail party problem”, because many people
have experienced the use of selective attention in a busy, noisy party to isolate one speaker’s voice
from the cacophonous mixture of many.  Mesgarani and Chang (2012) simulated this cocktail party
experience (unfortunately without the cocktails) by simultaneously playing two speech recordings to
their subjects, one in each ear. The subjects were asked to attend to the recording presented to a specific
ear  and  ECoG  was  used  to  record  neural  responses  from  the  STG.  Using  the  same  stimulus
reconstruction  technique  that  Leonard  et  al.  (2016) used,  Mesgarani  and Chang (2012) took turns
reconstructing the speech that was played to each ear. Despite the fact that acoustic energy entered both
ears and presumably propagated up the subcortical pathway, Mesgarani and Chang (2012) found that,
by the STG, only the attended speech stream could be reconstructed. To the STG, it was as if the
unattended stream did not exist. 
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We know from a second cocktail-party experiment (which again did not include any actual cocktails)
that selective attention is sensitive to how familiar the hearer is to each speaker. In their behavioral
study, Johnsrude et al. (2013) recruited a group of subjects that included multiple spouses. If you were
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Figure 9: The human brain reinstates missing auditory representations. A and B show spectrograms for 
two words, /fæstr/ ‘faster’ and /fæktr/ ‘factor’. The segments of the spectrograms for /s/ and /k/ are 
indicated by dashed lines. The arrow in A points to aperiodic energy in higher frequency bands 
associated with fricative sounds like [s], which is absent in B. C and D show neural reconstructions 
when subjects heard A and B. E and F show neural reconstructions when subjects heard the masked 
stimulus /fæ#tr/. In E, subjects heard “On the highway he drives his car much /fæ#tr/”, which caused 
them to interpret the masked segment as /s/. In F, the context suggested that the masked segment should
be /k/. Adapted with permission from Leonard et al. (2016).



a subject in the study, your partner’s voice was sometimes the “target” (i.e. attended speech); your
parter’s voice was sometimes the “distractor” (i.e. unattended speech); and sometimes both target and
distractor voices belonged to other subjects’ spouses. Not only did  Johnsrude et al. (2013) find that
subjects were better at recalling semantic details of the attended speech when the target speaker was
their  partner,  but  subjects  also  performed  better  when  their  spouse  played  the  role  of  distractor,
compared to when both target and distractor roles were played by strangers. In effect, Johnsrude et al.
(2013) amusingly showed that people are better at ignoring their own spouses than they are at ignoring
strangers. Given that hearers can “fill in” missing information when it can be predicted from context
(Leonard et al. 2016), it makes sense that subjects should comprehend the speech of someone familiar
who they are better at predicting than a stranger. Given that native speakers are better than non-native
speakers at suppressing the sound of their own voices (Parker Jones et al. 2013), it also makes sense
that subjects should be better able to suppress the voice of their spouse—again assuming that their
spouse’s voice is more predictable to them than a stranger’s. Taken together,  this suggests that the
mechanism behind selective attention is, again, prediction. So, while Mesgarani and Chang (2012) may
be unable to reconstruct the speech of a distractor voice from ECoG recordings in the STG, it may be
that “higher” brain regions will  nonetheless contain a representation of the distractor voice for the
purpose of suppressing it. An as-yet unproven hypothesis is that the increased neural activity in frontal
areas,  observed  during  noisy  listening  conditions  (Davis  and  Johnsrude  2003),  might  be  busy
representing background noise or distractor voices, so that these sources may be filtered out of the
mixed input signal. One way to test this might be to replicate Mesgarani and Chang (2012)’s cocktail
party  study,  but  with  the  focus  on  reconstructing  speech  from  ECoG  recordings  taken  from  the
auxiliary speech comprehension areas described by Davis and Johnsrude (2003) rather than from the
STG.

In the next and final section, we turn from sounds to semantics and to the representation of meaning in
the brain.

7. Semantic representations

Following a long tradition in linguistics that goes back to De Saussure (1989), speech may be thought
of as a pairing of sound and meaning. In this chapter, our plan thus far has been to follow the so-called
“chain of speech” (linking articulation, acoustics, and audition) deep into the brain systems involved in
comprehending speech (cochlea, subcortical pathways, primary auditory cortex and beyond). We have
asked  how  the  brain  represents  speech  at  each  stage  and  even  how  speech  representations  are
dynamically linked in a network of brain regions. But we have not talked yet about meaning. This was
largely dictated by necessity: much more is known about how the brain represents sound than meaning.
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Indeed, it can even be difficult to pin down what meaning means. In this section, we will focus on a
rather narrow kind of meaning that linguists refer to as semantics, and which should be kept distinct
from another kind of meaning called pragmatics. Broadly speaking, semantics refers to literal meaning
(e.g. “It is cold in here” as a comment on the temperature of the room) whereas pragmatics refers to
meaning in context (“It is cold in here” as an indirect request that someone close the window). It may
be true that  much of what  is  interesting about  human communication is  contextual  (we are social
animals after all), but we shall have our hands full trying to come to grips with even a little bit of how
the brain represents the literal meaning of words (lexical semantics). Moreover, the presentation that
we  give  here  views  lexical  semantics  from  a  relatively  new  perspective  grounded  in  the  recent
neuroscience  and  machine  learning  literatures,  rather  than  from the  linguistic  (and  philosophical)
tradition of formal semantics (e.g. Aloni & Dekker 2016). This is important because many established
results in formal semantics have yet to be explained neurobiologically. For future neurobiologists of
meaning, there will be many important discoveries to be made.

Embodied meaning

Despite the difficulty of comprehending the totality of what some example of speech might mean to
your brain, there are some relatively easy places to begin. One kind of meaning that a word might have,
for instance, will relate to the ways in which you experience that word. Take the word “strawberry”.
Part of the meaning of this word is the shape and vibrant color of strawberries that you have seen.
Another is how it smells and feels in your mouth when you eat it. To a first approximation, we can
think of the meaning of the word strawberry as the set of associated images, colors, smells, tastes, and
other sensations that it can evoke. This is a very useful operational definition of “meaning” because it is
to an extent possible to decode brain responses in sensory and motor areas and test whether these areas
are indeed activated by words in the ways that we might expect, given the words’ meanings. To take a
concrete example of how this approach can be used to distinguish the meaning of two words, consider
the words “kick” and “lick”: they differ by only one phoneme, /k/ vs /l/. Semantically, however, the
words differ substantially, including, for example, by the part of the body that they are associated with:
the foot for “kick” and the tongue for “lick”. Since we know that the sensorimotor cortex contains a
map of the body, the so-called “homunculus” (Penfield and Boldrey 1937), with the foot and tongue
areas at  opposite ends, the embodied-view of meaning would predict  that hearing the word “kick”
should activate the foot area, which is located near the very top of the head, along the central sulcus on
the medial surface of the brain, whereas the word “lick” should active the tongue area, on the lateral
surface almost all the way down the central sulcus to the Sylvian fissure. And indeed, these predictions
have been verified now over a series of experiments (Pulvermüller 2005): when you hear a word like
“kick” or “lick”, not only will your brain represent the sounds of these words through the progression
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of acoustic, phonetic and phonological representations in a hierarchy of auditory processing centers that
we have been discussing in this chapter, but your brain will also represent the meaning of these words
across a network of associations which certainly engage your sensory and motor cortices, and, as we
shall see, many other cortical regions too. 

The result of “kick” and “lick” is of fundamental importance because it gives us a leg up, so to speak,
on the very difficult problem of trying to understand the representation of semantics in the brain. Of
course, not all words are grounded in embodied semantics in the same way. For example, some words
are abstract. Consider the word “society”. Questions like “What does a society taste like?” or even
“What does a society look like?” are difficult to answer, because “societies” are not the kinds of things
that we taste or see. “Societies” are not like “strawberries”. But even abstract words like “society”
might  contain  embodied  semantics  that  become  apparent  when  we  consider  the  ways  in  which
metaphors link abstract concepts with concretely experienced objects (Lakoff and Johnson 1980). One
feature of “societies”, we might assert, is that they have “insides” and “outsides”. In this respect, they
are like a great many objects that we experience directly: “cups”, “bowls”, “rooms”. Therefore, it might
be  hypothesized  that  even such abstract  words  as  “society”  might  have  predictable  effects  on  the
sensory-motor system. Brain areas like the insula that respond to the physical “disgust” of fetid smells
also respond to the social “disgust” of seeing an appalled look on someone else’s face (Wicker et al.
2003). There are limits, however, to the embodied view of meaning. Function words, like conjunctions
and prepositions, are more difficult to associate with concrete experiences. As we have described it, the
approach is also limited to finding meaning in the sensorimotor systems, which is unsatisfying as it
ignores large swathes of the brain. In the next subsection, we turn to a more ambitious, if abstract, way
of mapping the meaning of words that is not limited to finding meaning in the sensorimotor systems.

Vector representations and encoding models

One difficulty of studying meaning is that it  is not only difficult to represent inside the brain, it is
difficult  to  represent  at  all.  If  you  ask  what  the  word  “strawberry”  means,  we  might  point  at  a
strawberry. If we know the activity in your visual system that is triggered by looking at a strawberry,
then  we can  point  to  similar  activity  patterns  in  your  visual  system when you think  of  the  word
“strawberry” as another kind of meaning. You might imagine that it is harder to point to just any part of
the brain and ask of its current state, ‘Is this a representation of “strawberry”?’. But it is not impossible.
In  this  sub-section,  we  will,  in  as  informal  a  way  as  possible,  introduce  the  ideas  of  “vector
representations” of words, and “encoding models” for identifying neural representations of vectors.

Generally speaking, an “encoding” model aims to predict how the brain will respond to a stimulus.
Encoding models contrast with “decoding” models, which aim to do the opposite: guess which stimulus
caused the brain response. The spectrogram reconstruction method that we mentioned in a previous
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section is an example of a decoding model (Mesgarani et al. 2008). An encoding model of sound would
therefore try to predict the neural response to an audio recording. In a landmark study of semantic
encoding,  Mitchell  et  al.  (2008) were able  to  predict  fMRI responses to the meanings of concrete
nouns, like “celery” and “airplane”. Unlike studies of embodied meaning, Mitchell et al. (2008) were
able to predict neural responses that were not limited to the sensorimotor systems. For instance, they
predicted accurate word-specific neural responses across bilateral occipital and parietal lobes, fusiform
and middle frontal gyri, and sensory cortex; left inferior frontal gyrus; medial frontal gyrus and anterior
cingulate  (see Figure  6 for reference)  (Mitchell  et  al.  2008).  These encoding results  highlight  and
expand upon something that was already implied by the idea that the meaning of a word might be
distributed over multiple sensory systems. They expand the number of regions over which the meaning
of a word might be distributed, to non-sensory systems like the anterior cingulate. An even greater
expansion of these semantic regions can be found in more recent work (Huth et al. 2016). 

So how does an encoding model work? If you are familiar with linear regression, then the model uses
linear regression to map from a vector representation of a word to the intensity of a voxel. This model
is repeated for each voxel representing the brain and trained on a subset of word embeddings before
being tested on a compliment set  of word embeddings,  in order to  evaluate the model’s ability  to
generalize  beyond the  words  it  was  trained on.  But  what  does  “vector  representation”  and “word
embedding” mean? This field is rather technical and jargon rich, but the key ideas are relatively easy to
grasp. “Vector representations” or “word embeddings” represent each word by a “vector”, effectively a
list  of  numbers.  Similarly,  “brain  states”  can  be  quantified  by  vectors  or  lists  of  numbers  which
represent the amount of activity seen in each voxel of the brain measured during a functional MRI scan.
Once we have these vectors, using linear regression methods to try to identify relationships that might
map one onto the other is mathematically quite straightforward. So the maths is not difficult and the
brain  activity  vectors  are  measurable  by  experiment,  but  how  do  we  obtain  suitable  “vector
representations” for each word that we are interested in? Let us assume a vocabulary of exactly four
words.

A list of four words:

1. “airplane”

2. “boat”

3. “celery”

4. “strawberry”
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One way to encode each of these as a list of numbers is to simply assign each word with one number:
“airplane” = [1], “boat” = [2], “celery” = [3], and “strawberry” = [4]. We have enclosed the numbers in
square brackets to mean that these are lists. Note that it is possible to have only one item in a list. A
good thing about this “encoding” of the words, as lists of numbers, is that the resulting lists are short
and easy to decode: we only have to look them up in our memories or in a table. But this encoding does
not do a very good job of capturing the differences in meanings between the words. For example,
“airplane” and “boat” are both man-made vehicles that you could ride inside, whereas “celery” and
“strawberry” are both edible parts of plants. A more involved semantic coding might make use of all of
these descriptive features to produce the following representations.

Semantic-field encodings for four words

word man-made vehicle ride-inside edible plant-part

airplane 1 1 1 0 0

boat 1 1 1 0 0

celery 0 0 0 1 1

strawberry 0 0 0 1 1

In this table, we have placed a “1” under the semantic description if the word along the row satisfies it.
For example, an “airplane” is man-made, so the first number in its list is “1”, but “celery”, even if
grown by humans, is not man-made, so the first number in its list is “0”. The full list for the word
“boat” is [1, 1, 1, 0, 0], which is five numbers long. Is this a good encoding? It is certainly longer than
the previous encoding (“boat” = [2]), and unlike the previous code it no longer distinguishes “airplane”
from “boat” (both have the identical five-number codes). Finally, the codes are redundant in the sense
that, as far as a linear-regression model is concerned, representing the word “boat” as [1, 1, 1, 0, 0] is
no more expressive than representing it as [1, 0]. Still, we might like the more verbose listing, since we
can interpret the meaning of each number, and we can solve the problem of “airplane” not differing
from “boat” by adding another number to the list. That is, if we represented the words with six-number
lists, then “airplane” and “boat” could be distinguished: “airplane” = [1, 1, 1, 0, 0, 0] and “boat” = [1,
1, 1, 0, 0, 1]. Now the last number of “airplane” is a “0” and the last number of “boat” is a “1”.

So far, our example may seem tedious and somewhat arbitrary: we had to come up with attributes such
as “man-made” or “edible”, then consider their merit as “semantic feature dimensions” without any
obvious objective criteria. However, there are many ways to automatically search for word embeddings
without needing to dream up a large set of semantic fields. An incrementally more complex way is to
rely on the context-words that each one of our target-words occurs with in a corpus of sentences.
Consider a corpus that contains exactly four sentences.
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1. “The boy rode on the airplane.”

2. “The boy also rode on the boat.”

3. “The celery tasted good.”

4. “The strawberry tasted better.”

Our target-words are,  again,  “airplane”,  “boat”,  “celery”,  and “strawberry”.  The context-words are
“also”, “better”, “boy”, “good”, “on”, “rode”, “tasted”, and “the” (ignoring capitalization). If we create
a table of target-words (rows) by context-words (columns), then we can count how many times each
context-word  occurred  in  a  sentence  with  each target-word.  This  will  produce  a  new set  of  word
embeddings. 

Context-word encodings of four words

word also better boy good on rode tasted the

airplane 0 0 1 0 1 1 0 2

boat 1 0 1 0 1 1 0 2

celery 0 0 0 1 0 0 1 1

strawberry 0 1 0 0 0 0 1 1

Unlike the previous semantic-field embeddings, which were constructed using our “expert opinions”,
these context-word embeddings were learned from data (a corpus of four sentences). Learning a set of
word embeddings from data can be very powerful. Indeed we can automate the procedure; and even a
modest  computer  can  process  very  large  corpora  of  text  to  produce  embeddings  for  hundreds  of
thousands of words in seconds. Another strength of creating word embeddings like these is that the
procedure is not limited to concrete nouns, since context-words can be found for any target word—
whether an abstract noun, verb, or even a function word. You might be wondering how context-words
are able to represent meaning, but notice that words with similar meanings are bound to co-occur with
similar context words. For example, an “airplane” and a “boat” are both vehicles that you ride in, so
they will both occur quite frequently in sentences with the word “rode”; however, one will rarely find
sentences that contain both “celery” and “rode”. Compared to “airplane” and “boat”, “celery” is more
likely to occur in sentences containing the word “tasted”. As the English phonetician (Firth 1957; page
11) wrote: “You shall know a word by the company it keeps”. 
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With a reasonable “vector” representation for words like these, one can begin to see how you might be
able to predict the brain activation for word meanings (Mitchell et al. 2008). Start with a fairly large set
of words and their vector representations, and record the brain activity they evoke. Put aside some of
the words (including perhaps the word “strawberry”) and use the remainder as a “training set” in order
to find the best linear equation that maps from word vectors to patterns of brain activation. Finally, use
that equation to predict “what the brain activation should have been” for the words you held back, and
test how similar that predicted brain activation is to the one that is actually observed, and whether the
activation patterns for “strawberry” is indeed more similar to that of “celery” than it is to that of “boat”.
One similarity measure commonly used for this sort of problem is the cosine similarity, which can be
defined for two vectors p⃗  and q⃗ , according to the following formula:

similarity ( p⃗ , q⃗)= p⃗⋅⃗q

√∑i
pi

2 √∑i
q i

2

Now if we plug the context-word embeddings for each pair of words from our example four-word set
into this equation, we end up with the following similarity scores. Note that numbers closer to “1”
mean “more similar” and numbers closer to “0” mean “more dissimilar”. A perfect score of “1” actually
means “identical”, which we see when we compare any word embedding with itself. You might also
note that we have only populated the diagonal and upper triangle of this table, because the lower part is
a reflection of the upper part, and therefore redundant.

Cosine similarities between four words

airplane boat celery strawberry

airplane 1 0.94 0.44 0.44

boat -- 1 0.41 0.41

celery -- -- 1 0.67

strawberry -- -- -- 1

As expected, the words “airplane” and “boat” received a very high similarity score (0.94), whereas
“airplane” and “celery”, for example, received lower similarity scores (0.41). The score for “celery”
and “strawberry”, however, were also more similar (0.67). Summary statistics like these, summarizing
the similarity between two very long lists of numbers, are quick and easy to compute, even for very
long lists of numbers. Exploring them also helps to build an intuition about how encoding models, like
those of  Mitchell et al. (2008), represent the meanings of words, and thus what the brain maps they
discover represent. Specifically, Firth (1957)’s idea that the company a word keeps can be used to build
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up a semantic representation of the word has had a profound impact on the study of semantics recently,
especially in the computational fields of natural language processing and machine learning (including
deep  learning).  Mitchell  et  al.  (2008)’s landmark  study  bridged  natural  language  processing  with
neuroscience, in a way that finds common ground for both fields at the time of writing. Not only do we
expect words that belong to similar semantic domains to co-occur with similar context-words, but if the
brain is capable of statistical learning, as many believe, then this is exactly the kind of pattern that we
should expect to find encoded in neural representations. 

To summarize, we have only begun to scratch the surface of how linguistic meaning is represented in
the brain. But figuring out what the brain is doing when it is interpreting speech is so important, and
mysterious, that we have tried to illustrate a few recent innovations in enough detail that the reader
might begin to imagine how to go further. Embodied meaning, vector representations, and encoding
models are not the only ways to study semantics in the brain. They do, however, benefit from engaging
with other areas of neuroscience, touching for example on the “homunculus” map in the somatosensory
cortex  (Penfield & Boldrey 1937). It is less clear, at the moment, how to extend these results from
lexical  to  compositional  semantics,  or  from literal  meaning to  metaphor.  A more  complete  neural
understanding of pragmatics will also be needed. Gladly, much work remains to be done. Because
spoken language combines both sound and meaning, a full account of speech comprehension should
explain how meaning is coded the brain. We hope that our readers will feel inspired to contribute  the
next exciting chapters in this endeavor. 

Conclusion

Our journey through the auditory pathway has finally reached the end. It was a substantial trip, through
the ear and auditory nerve, brainstem and midbrain, and many layers of cortical processing. We have
seen how, along that path, speech information is initially encoded by some 30,000 auditory nerve fibers
firing hundreds of thousands of impulses a second, and how their activity patterns across the tonotopic
array encode formants, while their temporal firing patterns encode temporal fine structure cues to pitch
and voicing.  We have learned  how, as these activity  patterns then propagate and fan out  over  the
millions  of  neurons  of  the  auditory  brainstem and  midbrain,  information from  both  ears  will  be
combined to add cues to sound source direction. Furthermore, temporal fine structure information gets
re-coded, so that temporal firing patterns at higher levels of the auditory brain no longer need to be read
out with sub-milisecond precision,  and information about the pitch and timbre of speech sounds is
instead encoded by a distributed and multiplexed firing rate code. We have seen that the neural activity
patterns at levels up  to and including the  primary auditory cortex  are generally thought to represent
predominantly physical acoustic or relatively low-level psycho-acoustic features of speech sounds, and
that this is then transformed into  increasingly  phonetic representations at the level of the STG, and
finally into semantic representations as we move beyond the STG into frontal and parietal brain areas.
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Finally we have seen how notions of embodied meaning as well as of statistical learning are shaping
our thinking about how the brain represents the meaning of speech. 

By the time they reach these meaning-representing levels of the brain, the waves of neural activity
racing up the auditory pathway will have have passed through at least a dozen anatomical processing
stations, each comprising between a few hundreds of thousands to hundreds of millions of neurons,
each richly and reciprocally interconnected both internally and with both the previous and the next
levels in the processing hierarchy. We hope the reader will share our sense of awe when we consider
that it takes a spoken word only a modest fraction of a second to travel through this entire, stunningly
intricate network and to be transformed from sound wave to meaning.  

One last  time we caution the reader to  remember that  the picture  we have painted here of a  feed
forward  hierarchical  network  which  transforms  acoustics  to  phonetics  to  semantics  is  a  highly
simplified one. It is well grounded in scientific evidence, but it is necessarily a rather selective telling
of the story such as we understand it to date. Recent years have been a particularly productive time in
auditory neuroscience, as insights from animal research, human brain imaging, human patient data and
ECoG studies and artificial  intelligence have begun to come together to provide the framework of
understanding which we have attempted to outline here.  But many important details remain unknown,
and while we feel fairly confident that the insights and ideas we have presented here will stand the test
of time, we must be aware that future work may not just complement and refine but even overturn
some of the ideas which we currently put forward as our best approximations to the truth. One thing we
are absolutely certain of though is that studying how human brains speak to each other will remain a
profoundly rewarding intellectual pursuit for many years to come. 
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