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Abstract

Previous psychophysical studies have identified a hierarchy of time-averaged statistics which
determine the identity of natural sound textures. However, it is unclear whether the neurons in
the inferior colliculus (IC) are sensitive to each of these statistical features in the natural sound
textures. We used 13 representative sound textures spanning the space of 3 statistics extracted
from over  200  natural  textures.  The  synthetic  textures  were  generated  by  incorporating  the
statistical features in a step-by-step way, in which a particular statistical feature was changed
while the other statistical features remain unchanged. The extracellular activity in response to the
synthetic texture stimuli was recorded in the IC of anesthetized rats. Analysis of the transient and
sustained multiunit activity after each transition of statistical feature showed that the IC units
were sensitive to the changes of all types of statistics, although to a varying extent. For example,
we found that more neurons were sensitive to the changes in variance than that in the modulation
correlations. Our results suggest that the sensitivity of the statistical features in the subcortical
levels contributes to the identification and discrimination of natural sound textures. 
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1. Introduction

Sound  textures  are  the  collective  result  of  many  similar  acoustic  events,  and  an  influential
psychoacoustic study has indicated that many natural sound textures are largely characterized by
key statistical features (McDermott & Simoncelli, 2011). Thus, textures with one particular set of
statistical features will sound like a crackling fire, and textures with another set may sound like a
rushing stream or a swarm of insects. McDermott & Simoncelli (2011) developed a model which
extracts  such  key  statistical  parameters  from recordings  of  natural  sound textures,  and  they
hypothesized that these types of statistics are likely also measured by the brain along successive
stages of neural processing in the auditory pathway, and may be used in the identification and
discrimination of different types of natural sounds.

The McDermott & Simoncelli (2011) model comprises two bandpass filter stages. The first set of
filters was designed to approximate cochlear processing, and the envelopes were computed from
each filter. The marginal moments and cochlear correlations are computed from the envelopes of
the first-stage filters. The signal envelopes computed in the first filter set are then also passed
through a second,  modulation  filter  bank,  and modulation  power and modulation  correlation
statistics  are  calculated  over  the  output  of  these  second-stage  filters.  The  bandwidths  and
frequency ranges used in the filter banks are chosen in agreement with known frequency and
modulation tuning properties seen at the level of cochlea and midbrain neurons respectively. The
set of statistical parameters computed by the model are thought to uniquely identify textures, and
they place each natural sound texture in a very high dimensional parameter space. The value of
these parameters has been demonstrated empirically by McDermott & Simoncelli (2011), who
were able to show that artificial textures synthesized to match a given statistical parameter set
can in most cases be easily identified as a particular texture type, and sound remarkably “life-
like”.  However,  the number of  parameters  generated  by McDermott  & Simoncelli’s  original
model to characterize a given texture is very large, perhaps up to several thousand depending on
the number of frequency and modulation channels used, and this large parameter set is highly
redundant.  In a previous study  (Mishra, Harper, & Schnupp, 2020), we reported that a large
portion of the variance in these very high-dimensional texture spaces can be captured by a much
lower  number  of  components,  which  often  lend themselves  to  intuitive  interpretation.  Thus,
marginal  moments  mostly  distinguish  sound  textures  along  dimensions  of  “sparseness”  or
“burstiness”,  which  discriminate  textures  according  to  the  extent  to  which  they  exhibit
intermittent  bursts  of  sound  energy,  instead  of  a  more  smooth,  continuous  sound  delivery.
Meanwhile,  cochlear  correlation  distinguishes  “highly  correlated”  textures,  such as  applause,
from “poorly correlated” ones, such as the sound of bubbling water. Modulation power mostly
differentiates  “rapidly  modulated  sounds”  (e.g.  buzzing  sounds  of  the  wings  of  bees)  from
“slowly modulated sounds” like ocean waves. Finally, modulation correlations on the other hand
can  differentiate  sound  textures  that  have  sudden  “phase-changes”  or  onset-offset-like
mechanisms  (e.g.  bomb  explosion,  firecrackers).  While  operating  in  this  reduced  statistical
parameter space ignores some of the richness and subtlety of natural sound textures, it does make
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it easier, for example, to select relatively small stimulus sets for experiments in a manner that can
be deemed fairly representative of the variety of textures likely found in the environment.

These  different  types  of  statistics,  envelope  marginals,  cochlear  correlations  and modulation
parameters, can also be thought of as forming a “hierarchy”, given that sound envelopes in each
cochlear  frequency  band  must  be  extracted  first  before  cochlear  correlations  and  amplitude
modulations can be computed. Similarly, one might expect this hierarchy to be emerge gradually
along  the  ascending  auditory  pathway.  The  auditory  brainstem  might  be  able  to  measure
marginals by observing the activity of groups of auditory nerve fibers within just a narrow range
of  characteristic  frequency  band  individually,  but  the  computation  of  cochlear  correlations
requires information to be combined across many frequency channels along the tonotopic array.
Measuring  modulation  statistics  requires  a  second filtering  step  which  is  needed for  neither
marginals  nor  cochlear  correlations,  so  perhaps  sensitivity  to  these  statistics  only  emerges
relatively late, perhaps at the level of the midbrain or even later. This notion of a “hierarchy”,
and the types of statistical features chosen by McDermott & Simoncelli (2011) were motivated at
least in part by known physiological properties of neurons in the auditory pathway, including
modulation tuning  (Hsu, Woolley, & Fremouw, 2004; Joris, Schreiner, & Rees, 2004; Miller,
Escabí, Read, & Schreiner, 2002; Rodríguez, Chen, Read, & Escabí, 2010), and the sensitivity to
temporal coherence  (Elhilali, Ma, Micheyl, Oxenham, & Shamma, 2009; Krishnan, Elhilali, &
Shamma, 2014). Furthermore, McDermott & Simoncelli (2011) hypothesized that the sensitivity
to each of these types of statistical features may already be present at the level of the auditory
midbrain, but the extent to which neurons in the inferior colliculus (IC) are already sensitive to
each of these types of statistical features has not yet been examined experimentally.

The objective of this study is to explore how pervasive sensitivity to each of these statistical
feature types is at the level of the IC. If IC neurons are sensitive to a particular statistical sound
texture feature, then changes in neural responses should be observed whenever that particular
feature of a sound texture changes abruptly, but all other characteristics are held constant. In
contrast, if a neuron is deaf to that particular type of statistical feature, then its response should
remain  unchanged.  To determine  how common sensitivity  to each of the types  of  statistical
features is among IC neurons, we therefore recorded extracellular responses of IC multiunits
with silicon array electrodes  implanted into the IC of ketamine/xylazine anesthetized  female
Wistar rats to sets of texture stimuli,  which were synthesized to incorporate,  at specific time
points,  abrupt  changes  in just  one type of statistical  feature while  leaving all  other  stimulus
parameters unchanged. The recordings were examined for either transient or sustained changes
in neural activity evoked by changes in each type of statistics. The results show that sensitivity to
all types of texture statistics can already be observed at the level of the IC, although to a varying
extent.

2. Materials and Methods

2.1 Animal subjects
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Five young adult (eight weeks old) female Wistar rats weighing approximately 250 − 280gm
were used for the terminal IC recording experiments described here. All rats were purchased
from the Chinese University of Hong Kong. The experimental  procedures in the study were
approved by the Ethics Sub-Committee on the Use and Care of Animals at the City University of
Hong Kong and under license by the Department of Health of Hong Kong [Ref. No. (18-167) in
DH/HA and P/8/2/5 Pt.5].

2.2 Stimulus design

2.2.1 Selection of representative sound textures:

A set  of  13  sound  texture  recordings  was  chosen  from our  corpus  of  200  recordings.  The
selection  was  essentially  random,  but  we  visualized  the  coordinates  of  the  selected  sound
textures in  the “principal component (PC) space” of statistical texture parameters described in
our previous study  (Mishra et al., 2020) to make sure that the random selection is reasonably
“representative”. For the entire corpus, marginals, cochlear correlations, and modulation power
statistics  of  each  sound  texture  had  been  measured  separately  and  subjected  to  principal
component  analysis  (PCA) to allow us to visualize the location of each chosen sound along
principal component coordinates within the corpus. Figure 1 shows the coordinates of the chosen
sounds along the first two principal dimensions for each feature type in PC space. By inspecting
the coordinates of the chose sounds relative to the rest of the corpus we can verify that  the
textures selected for the current study are widely distributed, and cover a substantial part of the
parameter space spanned by the corpus without leaving large parts of texture space unsampled.
In this sense, the 13 selected textures can be considered “representative samples”. The selected
13 textures included the following sounds: “applause”, “barn swallow calls”, “cackling geese”,
“church  bells”,  “burning  wood  sticks”,  “fireworks”,  “foot-steps  in  water”,  “frogs  at  night”,
“galloping horses”, “stirring liquid in a glass”, “lawnmower”, “xylophone”, and “tin can”. 

Figure  1. Selecting  representative  sound  textures  from a  corpus  of  natural
sound recordings. Sound textures in the PCA space of (A) Marginal statistics, (B)
Cochlear correlation statistics, and (C) Modulation power statistics. x- and y-axis
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represents  the  first  and  second  principal  components  respectively.  Grey  dots
represent sounds in the corpus. Red dots represent the selected texture sounds.

2.2.2. Synthesized stimuli 

For each of the 13 chosen textures, we used the Sound Synthesis ToolBox V1.7 (McDermott &
Simoncelli,  2011) to  synthesize sound samples  which morphed white  noise into full-fledged
textures in a stepwise process. Each step representing a sudden transition where just one set of
statistical parameters changes from that of white noise to that of the appropriate texture.  We
generated  six synthetic  variants  by matching  a  subset  of  the statistics  of  white  noise to  the
statistics of the original texture.  Starting with pseudorandom Gaussian white noise generated
with  a  particular  random  seed  value,  the  following  statistical  features  were  sequentially
incorporated in the synthetic variants: the sound power spectrum (Power), variance (+Var), skew
and kurtosis (+S.K.), cochlear correlation (+Coch.Corr), modulation power (+Mod.Power), and
modulation  correlation  (+C1+C2).  Segments  of  1.5  s  duration  of  each  of  these  consecutive
synthetic variants were then concatenated with a 10 ms cosine ramp cross fade. In addition, a 1.5
s long segment of the original sound (Ori), selected at random from the recording, was appended
at the end, to produce an 11.5 s long stepwise morph which transitions from spectrally shaped
noise to the full, natural sound in 7 transitions. To minimize possible idiosyncratic influences
that the choice of random seed might have, we produced 6 such morphs with different random
seed  values  for  each  of  the  13  chosen  textures.  Figure  2  shows  the  cochleagram  of  the  6
exemplars generated in this manner for one such sound texture (stirring liquid in a glass). Figure
3 shows the cochleagram of 13 textures.  All  morphs were scaled to have the same RMS power
throughout. The 1.5 s duration of each segment should be long enough to allow neural responses
to achieve a new steady state before the next transition, thereby allow us to quantify both “onset”
and “sustained” responses of neurons to each segment, while being short enough that responses
to large numbers of segments and transitions can be recorded in feasible experimental durations. 

Copyright: CC-BY-NC-ND  https://doi.org/10.1016/j.heares.2021.108357

https://doi.org/10.1016/j.heares.2021.108357
https://creativecommons.org/licenses/by-nc-nd/4.0/


Figure  2.  Stepwise  morphing  of  spectrally  shaped  noise  towards  full  sound
textures,  starting  from  different  random  seed  values. Cochleagrams  for  6
exemplars of synthesized sound (stirring liquid in a glass) using 6 random seeds
of  Gaussian  white  noise.  The  arrows  in  the  top  of  the  figure  dashed  lines
represent  the  transition  time of  the  synthetic  variants. From left  to  right,  the
synthetic variants correspond to Power, +Var, +S.K., +Coch.Corr, +Mod.Power,
and +C1+C2, and then end with the original sound Ori.
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Figure 3. The stimulus set used to characterize statistical feature sensitivity in
the IC. Each row shows the cochleagrams for one exemplar of our stimulus set,
morphing towards the sound texture indicated at the left. The arrows dashed lines
mark the transition times. From left to right, the synthetic variants correspond to
Power, +Var, +S.K., +Coch.Corr, +Mod.Power, +C1+C2, and Ori.

These sound stimuli were presented to the anesthetized rats via AS02204MR-N50-R (PUI audio,
Dayton, USA) earphones, coupled to hollow ear bars that were inserted into each ear canal, and
driven by TDT (Tucker-Davis Technologies System III) digital signal processor hardware. The
acoustic system was calibrated using a microphone (GRAS46DP), and an FIR filter compensated
the acoustic signal of the speaker to deliver a flat response across frequencies (0.5 to 20 kHz).
The sound level  of  each morph was normalized  to  80 dB SPL prior  to  splicing  the stimuli
together.  The sampling rate of the stimuli was 48,828.125Hz. Each of the 13 textures times 6
exemplars was presented 10 times, for a total of 13×6×10 = 780 stimuli, which were presented in
random order to characterize neural responses. 
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2.3 Electrophysiological recordings

To check the  hearing  status  of  our  experimental  animals  prior  to  the experiment,  we tested
Preyer’s reflexes and performed a physical examination of the ears and the tympanic membrane.
The  rats  were  anesthetized  by  i.p.  injection  with  an  initial  induction  dose  of  a  mixture  of
ketamine  (80  mg/kg)  and  xylazine  (12  mg/kg).  For  maintenance  of  anesthesia  during
electrophysiological recordings, a syringe pump delivered an i.p. infusion of 0.9% saline solution
of ketamine (17.8 mg/kg/h) and xylazine (2.7 mg/kg/h) at a rate of 2.1 ml/h. Body temperature
was measured rectally and maintained with a heating pad (RWD Life Science, Shenzhen, China)
and blanket at 38oC both during surgery and recording. The state of the animal was monitored
(temperature,  and toe-pinch withdrawal reflexes) throughout the experiment.  The animal  was
placed inside a sound-attenuating chamber, and head fixed using hollow ear bars in a stereotactic
frame (RWD Life Sciences). 

Auditory  brainstem  responses  (ABRs)  were  recorded  to  evaluate  the  hearing  sensitivity  of
animals before surgery. ABRs were evoked by the clicks (500μs white noise pulses) at a rate of
23Hz, and 400 click presentations were played at each intensity level (30 dB SPL to 80 dB SPL
in  5  dB  steps).  The  clicks  were  played  through  the  hollow  ear  bars  using  custom-made
headphone  drivers  based  on AS02204MR-N50-R (PUI  audio,  Dayton,  USA).  Stainless  steel
needle  electrodes  placed  at  the  mastoids,  nose,  and  back.  The  ABR  corresponded  to  the
averaging scalp potentials between mastoid and the vertex of the rat’s head (Rosskothen-Kuhl,
Buck, Li, & Schnupp, 2021). ABR thresholds at 30 dB SPL or below were deemed normal. 

For  the  IC recording,  the  right  temporal  muscle  and cranium were  removed just  anterior  to
lambda,  and  single  shank  32-channel  (50  μm  spacing  between  recording  sites,  ATLAS
Neuroengineering, E32-50-S1-L6) silicon electrodes were inserted into the IC in a dorsal-ventral
direction through the overlying cortex.  We confirmed the location of the electrodes in the IC
based on physiological criteria, such as strong click and tone evoked responses at very short
response latencies  of 7  ± 2 ms (mean ± standard deviation).  Based on these short  response
latencies, we suspect that most of our recording sites were in the central region of IC, given that
neural  responses  from the  dorsal  cortex  and  external  cortex  of  IC  typically  exhibit  longer
latencies of 15 ms or above (Syka, Popelář, Kvašňák, & Astl, 2000). The neural signals recorded
from the electrodes were amplified by a PZ5 preamplifier and recorded at a sampling rate of
24,414 kHz with a RZ2 system (Tucker-Davis Technologies).

2.4 Data analysis

The aim of this paper is to assess the extent to which neurons in the IC are sensitive to the types
of statistical  features that are thought to be important in distinguishing auditory textures. We
hypothesized  that  such a  sensitivity  should  manifest  in  changes  in  neural  activity  following
changes in statistical features of the morphed stimuli. Such changes in neural activity could be
either transient or sustained. To look for transient changes we analyzed a short, 50 ms wide time
window immediately after each stimulus transition, while for the sustained response analysis we
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considered time windows from 0.5 to 1.5 s after the transition. These windows were chosen by
inspection of a large number of PSTHs which indicated that IC neurons often exhibited brief
transient  responses,  and that 0.5 s is typically  plenty of time for IC neurons to settle  into a
“steady state” after changes in stimulation.  

Neural activity was analyzed offline using an “analog measure of multiunit activity” (aMUA)
measure, which measures the voltage signal power in the frequency band corresponding to the
extracellularly  recorded  action  potentials.  The  raw  signal  recorded  from  the  electrodes  is
bandpass filtered between 300 and 6000 Hz by a zero-phase shifting Butterworth filter, and took
the absolute value of the filtered signal, and then downsampled it to 2 kHz. This method for
quantifying  neural  activity  is   identical  to  that  used  in  previous  studies  (Kayser,  Petkov,  &
Logothetis, 2007; Sadeghi, Zhai, Stevenson, & Escabí, 2019; Schnupp, Garcia-Lazaro, & Lesica,
2015). 

2.4.1 Analyzing transient neuronal responses 

One potential difficulty in the analysis of these data is that the response properties of the IC
neurons recorded from are not fully known, and that they are likely to exhibit transient responses
to some idiosyncratic spectro-temporal features of a given sound texture. If such features happen
to  occur  by  chance  near  one  of  the  statistical  parameter  transitions,  then  such  responses  to
spectro-temporal  features  could  be  misinterpreted  as  responses  to  the  statistical  parameter
transitions.  As  we  will  see  later  in  example  response  data  (consider  Fig  4  below),  strong
fluctuations  in  responses  which  are  stimulus  driven  but  most  likely  unrelated  to  statistical
parameter transitions as they happen throughout the steady-states of the texture morphs. A good
statistical test for the significance of responses that are time-locked to the statistical parameter
transitions must therefore be able to quantify whether response amplitude changes around the
transition  are  larger  than  would  be  expected  given  the  potentially  large  “background”
fluctuations in responses caused by other stimulus related features. Conventional parametric tests
are  unsuitable  for  this,  not  just  because  the  distributions  of  response  amplitudes  will  often
deviate  from normal,  but  also  because response fluctuations  occur  in  a  “nested” fashion:  a
response to a sound feature that just happened to occur close to a transition in one particular
exemplar would be expected to occur in most of the 10 repeats of that particular exemplar, but
that similar transition unrelated responses happen at the same point in time in other exemplars or
texture types is probably less likely. The trial type therefore matters and one cannot consider the
responses  around  each  transition  as  a  separate  independent  sample.  To assess  the  statistical
significance of response amplitude changes around stimulus transitions we therefore constructed
resampling tests which are designed to compare response changes observed at transitions against
“null distributions” of changes seen at non-transition points in data which were resampled in a
manner that preserved the nested structure.  

In  practice,  this  test  assessed  whether  the  absolute  difference  between  the  mean  response
amplitudes during the 50 ms just before and just after the stimulus transition was larger than
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would be expected given the computed null distributions. Furthermore, to be able to interpret
significant,  transition-evoked  changes  in  neural  responses  as  evidence  that  the  neurons  are
sensitive to the given type of statistical feature, we also require that such a significant responses
“generalize”, that is, that they must occur for several of the different texture types tested here.
Significant responses to a given statistical parameter change for only a single one of the thirteen
texture  types  tested  would  unconvincing evidence  for  a  general  sensitivity  to  that  statistical
feature,  even  if  that  one  transition  response  was  individually  highly  statistically  significant.
Ideally we would like to see significant responses for many, if not all texture types, but given
that  the texture types  are  by design very different,  we need to  allow for the fact  that  some
textures may not drive a particular set of neurons very reliably, which would make them less
suitable for revealing significant changes at transition points even if the neurons are in principle
sensitive to the feature in question. We therefore carried out our resampling test separately for
each of the 13 textures, and then applied the criterion that, for a given type of feature transition, a
multiunit would have to exhibit significant responses to at least four of the 13 textures tested to
be considered sensitive to this statistical feature. We also conducted a control analysis to verify
that this test and the criterion ensure a high degree of specificity.

To judge whether the change in mean neural response amplitude during 50 ms on either side of a
stimulus transition is larger than expected by chance, we averaged responses over each of the 10
repeats of each exemplar and over each of the 6 exemplars of each texture, and computed the
absolute differences in these mean responses to compute the “true transition response”. We then
we used a bootstrap method to estimate the expected null distribution for this response measure.
We resampled the neural response time series during a steady state response period from 1000
ms to 100 ms prior to the transition. Neural response time series during this steady state response
(sampled in 10 ms bins) were averaged over stimulus repeats to yield a 6 exemplar by 90 time
bin neural response matrix.  To generate  one “simulated null  transition response” we picked,
uniformly  and  independently,  one  random  “simulated  transition”  time  point  for  the  mean
response to each exemplar, computed the average responses during the 50 ms before and after
that time point,  and calculated their  absolute difference.  These bootstrap samples of absolute
differences  were  averaged  over  the  6  exemplars  to  generate  one  simulated  null  transition
response value. This process was repeated 1000 times to generate a distribution of simulated null
transition  responses,  and  the  p-value  of  the  true  transition  response  was  computed  as  the
percentile of the true transition response value in the distribution of null transition values. To be
deemed to exhibit a significant transition response, a multiunit had to yield p-values 0.05 for at
least 4 of the 13 textures.

To verify  that  this  procedure  is  highly  selective  and generates  very  few false  positives,  we
conducted the following control: We simply replaced the true transition response value (which
compares 50 ms before the transition against 50 ms after a transition) with a “false” transition
value which compares the response 50 ms before the transition against the response observed
during the period from 100 to 50 ms prior to the transition. These “false transition responses”
were then compared against the bootstrapped simulated null transition response distribution to
compute “sanity check p-values”, which would have to be attributable to false alarms. These
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sanity-check p-values were subjected to the same criterion of requiring at least four values below
0.05 to fulfil our significance criterion. We conducted this test on all 6 stimulus transitions and
all 480 multiunits in our sample, and we obtained only one single false positive result on a single
transition  for  a single multiunit.  This  low false positive  rate  (1 false  positive  in  2880 tests)
demonstrates the high specificity of our test. 

2.4.2 Measuring sustained neuronal responses

The method that  we described for  testing  the statistical  significance  of  any observed neural
response for transient responses cannot be applied directly for sustained response analysis as
there aren’t sufficiently many wide time windows to allow adequate resampling. Therefore, we
developed a slightly different analysis method for the sustained response analysis.

For  estimating  the  response  before  a  given  stimulus  transition,  we  averaged  the  AMUA
amplitudes in a 1 s wide time window just prior to the transition. For each texture, we resampled
the averaged AMUA over the 6 exemplars and 10 trials with replacement, and then calculated
the  mean of  these 60 numbers.  Repeating  this  process  1000 times,  we obtained a  bootstrap
distribution of the mean AMUA amplitudes during one second preceding the transition. We then
repeated this procedure for a “sustained response period” from 0.5 s to 1.5 s post transition.
Finally we considered the pre- and post-transition bootstrap distributions significantly different
at an alpha of 0.05 if they did not overlap by more than 5%. As for the transient responses, we
required that a multiunit shows significant differences in the pre- and post-transition sustained
responses for at least 4 out of our 13 textures for that multiunit to be considered sensitive to the
statistical features that changed during that particular transition.

2.5 Spectro-temporal receptive field (STRF) model analysis

To investigate whether observed responses to statistical parameter transitions could be explained
by simple spectro-temporal tuning, we built a linear-nonlinear (LN) model (Lohse, Bajo, King,
& Willmore, 2020; Rabinowitz, Willmore, Schnupp, & King, 2011). The model approximates
the relationship between a ‘cochleagram’ of the sound stimuli and each multiunit’s response,
using a linear receptive field, known as a spectrotemporal receptive field (STRF), followed by a
simple sigmoidal output non-linearity. A cochleagram is an approximation the representation of
sound by the auditory periphery; we used the spec-log cochleagram model from Rahman et al.
(2020) but with 20 ms Hanning windows overlapping by 10 ms, and 24 frequency channels. The
STRFs used 100 time bins (1000 ms) of the immediate past cochleagram activity to estimate the
AMUA amplitude at a given time bin.

For  each  unit,  an  LN  model  was  fitted  to  the  AMUA  amplitude  averaged  in  10  ms  bins,
via minimum mean squared error (MSE), using k-fold cross-validation. To prevent overfitting,
the parameters were regularized using L1-norm (LASSO) regularization, the strength of which
was governed by a paramber lambda. We divided the neural responses of the unit into three non-
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overlapping sets; a training set consisting the responses to four exemplars of all 13 stimuli, and a
validation set and test set each consisting the responses to one exemplar of all 13 stimuli. We
then fit the LN model to the training set for a range of lambda values, and then found the lambda
that gave the lowest MSE on the validation set. Then, we again fit the LN model using this
lambda to the combined validation and training set. Finally, we used this model fit to predict the
response for the test set and we evaluated this prediction using the Pearson correlation coefficient
between the prediction and the actual neural response. This procedure was repeated six times,
each time with a different validation and test set, enabling the response to all the stimuli to be
predicted.  The  final  goodness  of  the  LN  predictions  were  evaluated  by  the  average  of  the
correlation coefficient over the six folds. This correlation coefficient, also averaged over all over
units, was 0.54. 

2.6 AMUA change index 

The AMUA change index provides a measure of how much the neural responses change when
there is a transition from one synthetic variant to another. To do this, for each unit, we first
average the neural responses over all 13 textures and 6 exemplars to provide a single trace over
time across the synthetic variants. We then measured the AMUA change index over the two
successive synthetic variants by the formula below:

AMUAChangeIndex=
AMUA post−AMUA pre
AMUA post+AMUA pre

 , 

where  AMUApre and  AMUApost  represents the averaged AMUA in the pre- and post- transition
time window, respectively. The pre-transition time window is 1 s before the transition, and post-
transition is 0 to 50 ms (transient response) or 500 ms to 1500 ms (sustained response) post the
transition. 

We  calculated  the  AMUA  change  index  for  both  the  actual  neural  data  and  for  the  LN
predictions. Then for each transition, we compared the distribution of the AMUA change index
over  the  population  of  units  for  the  actual  neural  data  with  the  distribution  for  the  LN
predictions. We did this for both the transient response and the sustained response. 

2.7 Computing mutual information (MI) of sustained neuronal responses

The main question of this paper was to identify the extent to which IC neurons are sensitive to
changes in the statistical features that distinguish different sound textures. A somewhat related
question  is  whether  neural  responses  themselves  may  distinguish  different  texture  types,
independently of which particular exemplar of a type is being presented. While our stimulus set
has not been optimized to address this question, it is perhaps nevertheless of some interest to
compute  the  MI  between  texture  type  and  neural  responses  in  our  dataset.  We  therefore
computed the MI between AMUA amplitude and sound texture independently for each multiunit,
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and asked how the MI values  change as more and more texture  features  were added in the
synthetic variant.  We averaged the AMUA amplitudes over a 1 s wide steady-state response
window  just  before  the  next  transition  for  each  trial,  yielding  60  mean  AMUA  response
amplitudes (6 exemplars x 10 trials per exemplar). We discretized these AMUA amplitudes into
six levels,  and used the  adaptive-direct  method  (Buck,  Rosskothen-Kuhl,  & Schnupp,  2021;
Itskov, Vinnik, Honey, Schnupp, & Diamond, 2012; Nelken, Chechik, Mrsic-Flogel, King, &
Schnupp, 2005) to estimate MI between single trial AMUA amplitude and the identity of the
texture type (1-13 possible textures). We bias-corrected MI-values and determined whether MI
values were significantly greater than zero (α = 0.01) using the permutation method described in
Nelken  et  al.  (2005).  This  involved  subtracting  bias  estimates  obtained  by  reshuffling  the
response and stimulus labels 100 times. MI values were calculated separately for each synthetic
variant  (i.e.  each  synthesis  step  of  our  morphs),  and  the  distributions  of  MI  values  were
examined for units (n = 387) included if they showed the corrected MI values significantly larger
than zero for all synthetic variants. 

3.  Results

In  total  480 multiunits  were  recorded in  the  course  of  15  penetrations  with the  32 channel
multielectrode (3 penetrations / animal). Figure 4 shows examples of average AMUA responses
from two representative multiunits  to the 6 exemplars of one particular  texture morph. Both
multiunits show an increase in response at the transition from the Power to the +Var condition,
but for the unit in Figure 4A this response appears sustained, while for the unit in Figure 4B it
seems entirely  transient.  Both  multiunits  also  show much  more  variable  responses  after  the
transition from the +Coch.Corr to the +Mod.Power condition. Also, as expected, we see that the
response patterns across the 6 exemplars, which have identical statistical texture parameters but
different random seeds, are similar but not identical. 

Figure 4. Examples of two multiunits in response to 6 exemplars of the texture
(Cackling  Geese).  Each  row  represents  the  response  to  one  exemplar  of  the
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stimulus,  the  black  dashed  lines  represent  the  transition  time of  the  synthetic
variants, and the red dashed lines represent the AMUA baseline. Red and gray
bars indicate the time window of the transient response and sustained response,
respectively.

We used the bootstrap methods described in section 2.4 to identify which transitions in texture
statistics evoked either transient or sustained changes in the neural responses across our dataset
of  480 multiunits.  The proportion of  multiunits  which  were sensitive  to  each of  the texture
feature types as shown graphically in Figure 5A for transient and in Figure 5B for sustained
responses. We found that 76.46% of multiunits gave significant transient responses at the +Var
transition, 6.04% at +S.K, 37.71% at +Coch.Corr, 58.13% at +Mod.Power, 15% at +C1+C2, and
58.96% at +Ori, respectively. For the sustained response, the proportions were 98.96% at +Var,
60.62% at +S.K., 76.88% at +Coch.Corr, 65.62% at +Mod.Power, 24.58% at +C1+C2, and 85%
at  +Ori,  respectively.  Sensitivity  to  all  the  statistical  features  proposed  by  McDermott  &
Simoncelli (2011) was therefore widespread among IC neurons. Note also the large proportions
of multiunits which showed significant changes in their responses in the final +Ori transition,
which indicates that many multiunits are sensitive to other features of the recorded sounds which
are not captured by in synthetic textures created with the McDermott & Simoncelli (2011) Sound
Synthesis Toolbox. 

Figure 5. The percentage of multiunits in the IC showing significant changes in
transient response (A) and sustained response (B) across synthetic variants. Error
bars represent 95% Wilson confidence intervals.

Sustained  changes  in  sustained  responses  could  manifest  as  either  increases  or  decreases  in
firing, and these are not distinguished in Figure 5B. To examine whether particular changes in
statistical features were more likely to result in increasing or decreasing firing rates we plot in
Figure 6, separately for each of our 13 textures, the proportion of IC multiunits where a given
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transition resulted in significant increases and/or decreases in response strength. One observes
curious trends. For example while the +Var transition in most cases led to increases in mean
firing  rates,  for  +S.K.  and  +Mod.Power,  decreases  were  more  common,  and  for  the  other
transitions, the picture was mixed.  

Figure 6. The percentage of multiunits showing significant increases or decreases
respectively  in  their  sustained  responses  after  each  of  the  feature  transitions
shown on the x-axis. Different colors bars show the results for each of the 13
different textures, and the textures are in the same order in Figure 3.

To examine  the  relationship  between  the  change  of  neural  response  and  the  change  of  log
spectrogram of the stimulus we used a linear-nonlinear (LN) model fitted to the responses of
each neuron. We used the fitted LN model predict what the neural responses would be if they
just depended in a linear manner (with a simple static nonlinearity) on the sound spectrogram –
that is, we asked how much of the sensitivity to statistical change that we see can be explained
by the spectrotemporal  tuning of the neurons.  To this  end, we compared a  distribution  of a
measure of response change (AMUA change index) over units from the actual recording and LN
predictions for each transition (Figure 7). Most recording units from both actual recording and
LN prediction showed an increased response at the +Var transition, however, the AMUA change
index for most units from the LN predictions was smaller than that from the actual recording
(Figure  7A,  first  column).  We  also  observed  that  the  AMUA  change  index  for  the  actual
recording is opposite from the LN predictions for some transitions. For example, at the +S.K.
transition, most units from the actual recording showed a decreased response (Figure 7B, second
column),  however,  most  units  from  LN  predictions  showed  an  increased  response.  At  the
transition  Ori,  most  units  from  the  actual  recording  showed  an  increased  neural  response,
however, most units from the LN prediction showed a decreased response. Although the neural
response from the LN prediction showed changes over the stimulus transitions, the change of LN
predictions was opposite from the actual neural response or the change scale is much smaller
than the actual neural response. This suggests the neural sensitivity to the statistical features is a
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nonlinear  transformation  instead  of  a  simple  linear  dependence  on  the  sound  spectrogram
change. 

Figure  7  The  distribution  of  the  AMUA  change  index  of  transient  (A)  and
sustained (B) response for each of the feature transitions.  

The neural coding of the texture type was quantified by the MI of the sustained response for each
synthetic variant. We found that the median of the MI values over units was 0.16 bits/response at
the  Power  transition,  0.30  bits/response  at  +Var  transition,  0.27  bits/response  at  +S.K,  0.27
bits/response at +Coch.Corr, 0.25 bits/response at +Mod.Power, 0.25 bits/response at +C1+C2,
and  0.32  bits/response  at  +Ori,  respectively.  One  might  expect  the  MI  values  to  increase
progressively as more potentially  identifying statistical  features are added. However, we saw
only a clear increase at the Power to +Var transition and then MI values appeared to plateau.
That observation is perhaps not too surprising. The MI method here only quantifies sustained,
steady-state responses over 1 s durations, which is unlikely to be well matched to the coding
strategy employed by IC neurons, and as seen in Figure 4, it  can also happen that between-
exemplar variance increases with increasing complexity of texture features. As such, the plateau
in the median MI values observed in Figure 8 is unsurprising if we assume that most IC neurons
are not set up to encode texture type in steady state response amplitudes. 
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Figure 8. The MI distribution over multiunits for each synthetic variant. The red
bar indicates the median MI over units (n = 387), and the edges indicate the 25th
and 75th percentiles, respectively. The whiskers indicate the outliers. 

4.  Discussion

In this study, a set of morphed stimuli was used to examine how commonly responses of IC
neurons  are  sensitive  to  the  statistical  parameters  known  to  characterize  different  types  of
environmental sound textures. This study has focused specifically on what proportions of the
multiunits respond to the different statistical parameters present in the stimuli. How sensitivity to
these statistical parameters arises in the brain is beyond the scope of the research question raised
here but opens more interesting scientific questions for future studies.

We found that most multiunits in the IC are sensitive to most of the types of statistical features
extracted by the auditory model from the study of McDermott et al. (2011). While some of these
results  are  perhaps  unsurprising,  given for  example  that  neurons in the IC are known to be
sensitive to modulation (Frisina, 2001), other aspects are perhaps less expected. For example, it
is  not  obvious  why  so  many  of  the  often  narrowly  frequency-tuned  IC  neurons  should  be
sensitive to cochlear correlations. Nevertheless, we found that almost half of IC neurons will
respond with an onset transient response to sudden changes in cochlear correlations, and almost
80% may respond to changes in correlations with changes in sustained firing rates (compare
Figure 5).

It has long been thought that a statistically efficient representation of environmental information
may be a design principle that guided the evolution of sensory systems  (Attneave, 1954). The
statistical  structure  of  natural  signals  is  highly  conserved  across  natural  sounds  (Attias  &
Schreiner,  1997; Escabi,  Miller,  Read,  & Schreiner,  2003;  Nelken,  Rotman,  & Yosef,  1999;
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Singh & Theunissen, 2003; Voss, 1975). Both peripheral and central auditory neurons appear to
match  their  response  properties  to  statistical  regularities  in  the  acoustic  environment  to
efficiently encode natural sounds  (Attias & Schreiner, 1998; Escabi et al., 2003; J. A. Garcia-
Lazaro,  Ahmed,  &  Schnupp,  2006;  Jose  A  Garcia-Lazaro,  Ahmed,  &  Schnupp,  2011;
Holmstrom, Eeuwes, Roberts, & Portfors, 2010; Lesica & Grothe, 2008; Nelken et al., 1999; S.
M. N. Woolley, 2005) or to efficiently predict the immediate future of natural sounds (Singer et
al., 2018). In the auditory pathway, the IC is an obligatory station that receives convergent inputs
from the numerous brainstem structures and sends its highly processed outputs to the auditory
thalamus, and, subsequently, to primary auditory cortex. Numerous studies have reported that IC
neurons are sensitive to the spectral and temporal stimulus attributes (Escabí & Schreiner, 2002;
Irvine & Gago, 1990; Krishna & Semple,  2000; Kuwada et  al.,  1997; Langner & Schreiner,
1988;  Ramachandran,  Davis,  & May, 1999; Rees & Møller,  1983, 1987; C. E.  Schreiner  &
Langner, 1988; C. Schreiner, Urbas, & Mehrgardt, 1938). However, many such studies use only
highly simplified stimuli, such as amplitude modulated tones or noise stimuli, which simplifies
stimulus design and data interpretation, but the ecological validity of such simplified stimuli may
be limited, raising question on whether or how findings generalize to the much more complex
natural  soundscapes  experienced  by  animals  in  the  real  world.  The  great  diversity  and
complexity of natural  sounds creates a barrier  to analyzing neural  responses to these sounds
(Attias & Schreiner, 1998). Natural or naturalistic sound textures of the type used here may help
us overcome some of these limitations since they contain much of the richness and diversity of
ecological sounds recorded in nature,  but they do remain fully described by a limited,  albeit
large, set of parameters (McDermott & Simoncelli, 2011).

Using the methodology developed by McDermott & Simoncelli (2011), we previously computed
and analyzed the marginals, cochlear correlations, modulation power and modulation correlation
statistics of 200 natural sound textures and subjected them to principal component analysis in
order to reduce the complexity of McDermott & Simoncelli’s original high-dimensional feature
space (Mishra et al., 2020). The sound textures used in this study were selected so as to cover a
wide range of the resulting PC space of our corpus of natural sound recordings (Figure 1). We
then used the  simple generative model by McDermott et al. (2011) to create a set of synthetic
stimuli which morph in a series of discrete transitions from flat, spectrally shaped noise to full
exemplars of natural sound texture stimuli. By looking for changes in neural firing induced by
each of these stepwise transitions we were able to determine whether mulitunits recorded in the
IC were sensitive to the corresponding set of statistical features. 

We found that at least some IC multiunits are sensitive to all the statistical features of natural
sound textures described by McDermott & Simoncelli (2011), that most neurons were sensitive
to most statistical features, and that such sensitivity could manifest through transient responses,
or, more commonly, through changes in sustained mean firing rates. These differential transient
vs sustained responses by the IC multiunits is reminiscent of a previous study by Zheng & Escabi
(2008), which has also reported a differential  encoding of sound envelope properties through
transient and sustained responses. As a particular case in point, consider responses to the +S.K.
transition.  When +S.K. stimuli are synthesized from white noise, then these are very low on
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cochlear  correlations  and  mostly  sound  somewhat  like  bubbling  water  (McDermott  &
Simoncelli,  2011).   Only about  ~6% IC multiunits  signal  a +S.K. transition  with a transient
response,  but  over  half  of  them will  respond with significant  changes  (usually  declines,  see
Figure 6) in their sustained firing rates in response to at least some of the textures tested.

For the +Coch.corr statistical transition, 77% of the IC multiunits showed significant response in
a sustained window whereas ~38% were sensitive in the transient window. The IC, due to its
central  location in the auditory pathway, receives convergent inputs from multiple  brainstem
structures. The IC neurons have also been reported to perform temporal integration (Voytenko &
Galazyuk,  2007).  Certain  “higher  order”  statistics  may require  more  time  to  be detected  by
central auditory neurons. A case in point are modulations. Ecologically relevant amplitude or
frequency modulations can occur at relatively low modulation frequencies, and analysis windows
cannot be shorter than the periods of these modulation frequencies if the strength of modulation
to such low frequencies is to be determined. Numerous previous studies have documented the
selectivity of IC neurons to spectrotemporal modulations (Escabi et al., 2003; Theunissen, Sen,
& Doupe, 2000; Sarah M N Woolley et al., 2005) and have highlighted the importance that such
modulations can have as information-bearing attributes  (Elliott & Theunissen, 2009; Singh &
Theunissen, 2003). Given this well documented importance of modulations, it is unsurprising
that a high proportion of IC multiunits in our study were sensitive to the +Mod.Power transition,
but it is interesting that as many as ~60% of the IC multiunits signaled that transition already in
their transient response window, within 50 ms from the transition. Perhaps these widespread and
surprisingly  rapid  sensitivity  to  changes  in  modulation  parameters  relate  to  observations  by
Zheng & Escabi  (2008), who have described that IC neurons can be sensitive to the shape, and
not just the rate, of modulation envelopes, and abrupt shape changes might be detectable quite
rapidly. However, the extent to which such mechanisms apply to usually quite stochastic texture
stimuli where exact repetitions of envelope shapes would not normally be expected will need to
be investigated in the future. 

We found most of the IC multiunits (~85%) to be sensitive to the +Ori in sustained windows.
Although McDermott & Simoncelli’s (2011) psychophysical results in humans demonstrated that
the synthesized textures with all subsets of texture parameters were often easily identifiable and
highly  realistic,  our  results  nevertheless  found that  the large  majority  of  IC multiunits  were
sensitive to the transition from the fully morphed texture with all parameters to a segment of the
natural  sound  texture  recording.  A  possible  explanation  for  this  is  that  there  are  additional
features beyond those identified by McDermott & Simoncelli’s  (2011) which distinguish real
textures from synthetic ones, and which IC neurons are commonly sensitive to, but other possible
explanations  cannot  be discounted.  For  example,  Bar-Yosef  & Nelken  (2007) described that
auditory cortex neurons can be exquisitely sensitive to rather arcane features of natural sound
recordings, such as reverberant echoes, which listeners are often completely unaware of, and
which  a  resynthesis  of  sound  textures  from  statistical  parameters  with  McDermott  &
Simoncelli’s toolbox would not reproduce. Responses of IC neurons are known to be strongly
influenced by features such as reverberation (Slama & Delgutte, 2015). Previous neuroimaging
studies in humans and ferrets  showed that primary areas of the auditory cortex (A1) are not
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substantially  sensitive  to  higher-order  statistics  distinguishing  sounds  synthesized  from  the
acoustic model and natural sounds  (Landemard et al., 2020; Norman-Haignere & McDermott,
2018). It might suggest that there are less neurons in the A1 sensitive to the higher-order features
not capturing by the acoustic model. However, neuroimaging studies measured the population
neural response at a slow time resolution (~2 s), our stimuli are fast at about 1.5 s. If there are
many  A1  neurons  respond  transiently,  it  gets  smeared  out  in  imaging  with  non-responsive
segments. Therefore, imaging might not perfectly map to neural electrophysiological activity.
Although the complex computation ability of IC was worse than A1, the accuracy of coding the
input spectrogram in IC was stronger than A1 (Rabinowitz, Willmore, King, & Schnupp, 2013)
and certain details of cochlea or brainstem representation may not to transmit to A1(Rahman,
Willmore, King, & Harper, 2020) . It might suggest that IC is much easily affected by the sound
spectrogram change than the A1 neural response, we might expect more IC neurons sensitive to
the higher-order statistics beyond the acoustic model than AC. Furthermore, the textures used in
this study differ from those used in the neuroimaging studies (Landemard et al., 2020; Norman-
Haignere  &  McDermott,  2018) and  some  textures  we  used  may  be  less  well  captured  by
McDermott & Simoncelli’s model. Additionally, the model is optimized for human perception,
and the rat might be sensitive to the other statistics beyond the statistical features in the acoustic
model. 

We found that most IC units were sensitive to the transitions of statistical features, however, the
stimuli cochleagram also changed as statistical features were added. We asked how much of this
sensitivity could be explained by the neurons’ linear spectrotemporal tuning being applied of the
changing cochleagrams. To this end, we built an LN model that we fit to the neural responses;
this model consisted of a linear spectrotemporal receptive field and a simple static nonlinearity.
The neural response predicted by the LN model showed changes over the stimulus transitions,
however, often the changes of the LN predictions were opposite from the actual neural response
or the change scale was much smaller than the actual neural response. This suggests that the
neural  sensitivity  to  the  statistical  features  is  a  relatively-complex  nonlinear  transformation
instead of a simple linear dependence on the sound spectrogram change. Our findings here with
textures are consistent with previous findings in other contexts that also suggest that IC neural
responses cannot be fully accounted for by a linear integration model (Escabı & Schreiner, 2002;
Lee, Schrode, & Bee, 2017; Lyzwa, Chen, Escabi, & Read, 2020). Hence, our results suggest
that  there  are  nonlinear  mechanisms  impacting  IC  responses  that  enable  sensitivity  to  the
statistical features of textures.

We also undertook some investigation of the capacity of the IC neural responses to discriminate
between the different texture types. Previous work on discrimination of five different texture
stimuli suggests that IC has this capacity (Sadeghi et al., 2019; Zhai et al., 2020). Here for our 13
textures, we estimated MI to examine the neural coding of the texture type for each synthetic
variant with varying statistical features and original sounds. From the human behavior results in
McDermott  & Simoncelli’s  (2011) study,  one might  expect  the  MI values  increase  as  more
statistical features were added in synthetic variants. However, our results showed that the MI
value increased from Power to +Var, and then reached a plateau. Several possible reasons might
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explain the inconsistency between our neural data with the human behavior results (McDermott
& Simoncelli, 2011). We quantified MI using the averaged sustained response over 1 s duration
at a single trial level, so the MI value was affected by the trial-to-trial variability. The stimuli
spectrogram becomes more dynamic after the + Coch. Corr transition (Figure 2 and Figure 3),
might  increase  the  trial-to-trial  variability.  For  the  human  behavior  task  in  McDermott  &
Simoncelli’s (2011) study, the listeners were asked to pick one texture name from five names
after listening to one sound. The task is to match the sound to the participants’ known sounds.
The MI values measured the discriminability across the 13 textures in the current study, which is
different from the human behavior task.  

A final interesting but open question is how our results relate to the large and growing literature
on change detection in the auditory system. Deviance detection is thought to be adopted by the
auditory system to give perceptual saliency to acoustic events that were not predictable based on
sustained stimuli, and which therefore signal changes in the environment which may require a
behavioral  response  (Winkler  & Schröger,  2015).  Two types  of  physiological  signatures  are
often used to study neural correlates of auditory change detection: stimulus specific adaptation
(SSA) which  is  usually  quantified  as  the  index  of  change  in  the  firing  rate  of  a  neuron  in
response to a deviant stimulus when compared with its response to that same stimulus played as
a standard  (Nelken & Ulanovsky, 2007; von der Behrens, Bauerle, Kossl, & Gaese, 2009), and
mismatch negativity (MMN) which is detectable in non-invasive scalp recordings. MMN has a
much slower time course than SSA and is thought to be of cortical origin, but SSA at lower
levels of the auditory pathway may facilitate MMN, and SSA has been observed as early as non-
lemniscal parts of the IC  (Aguilar Ayala & Malmierca, 2013; Anderson & Malmierca, 2013;
Liberman, Epstein, Cleveland, Wang, & Maison, 2016; Malmierca, Cristaudo, Pérez-González,
& Covey,  2009).  SSA and MMN are often studied with high regular,  rhythmic  stimulation,
which makes the stimuli easy to parameterize but limits ecological validity. However, Winkler et
al. (2003) observed MMN even in highly naturalistic stimuli that lacked regular rhythms, and it
seems possible that the auditory system may achieve change detection by monitoring features of
the  acoustic  environment  which go beyond detecting  a  change in  regular  rhythmic  patterns.
Auditory textures are fundamentally noise-like and characterized by statistical distributions of
features  rather  than  highly  regular  patterns.  It  is  interesting  to  speculate  that  the  transient
responses to changes in statistical features of sustained sounds which we observed so frequently
in IC responses might represent another important change detection mechanism in the ascending
auditory pathway, but this idea will require proper development in follow-on studies.
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